Thermodynamics and Energetics of Creating Correlations

Nicolai Friis ${ }^{1}$, Marcus Huber ${ }^{2}$, and Martí Perarnau-Llobet ${ }^{3}$

Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
${ }^{2}$ Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria ${ }^{3}$ ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

Introduction \& Motivation

A fundamental connection between thermodynamics and information theory arises from the fact that correlations exhibit an inherent work value [1]. Conversely, one may ask how much energy is needed to create correlations [2,3]. Here, we present investigations of this question for both noninteracting systems [3], and for systems where interactions cannot be controlled or removed [4]. We present ultimate bounds and optimal protocols for the noninteracting case, and discuss general strategies outperforming those bounds for naturally coupled systems. Our results are illustrated for some examples of interest.

GENERAL SETUP

Systems S_{1} and S_{2} at temperature T Extracted from thermal bath B at T Thermal state: $\tau(\beta)=\mathcal{Z}^{-1} e^{-\beta H}$
$U_{S} \& U_{S B}$ create correlations Work cost: $W=\Delta F$
Free energy: $F(\rho)=E(\rho)-T S(\rho)$

Optimal Generation of Correlations (see rer. [3])

Bound for maximal correlation for $H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B}$ Mutual information: $\mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$ $W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B} \& \Delta F_{S}=\Delta F_{S_{1}}+\Delta F_{S_{2}}+T \mathcal{I}_{S_{1} S_{2}}$ For thermal states: $\Delta F=T S(\rho \| \tau(\beta))$
Maximal correlation for fixed W and $T: \mathcal{I}_{S_{1} S_{2}} \leq \beta W$

I Cooling: Lower temperature of S from T to $T_{\mathrm{I}} \leq T$
II Correlating: Isolate S from B; Correlate via unitary U_{S} such that S_{1} and S_{2} are locally thermal at temperature $T_{\text {II }} \geq T_{\text {I }}$ Overall work cost: $W=W_{\mathrm{I}}+W_{\text {II }}=T S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right) \| \tau_{S}(\beta)\right)+T \mathcal{I}_{S_{1} S_{2}} \Rightarrow T_{\text {II }}=T$

Example: Correlations for Two Fermionic Modes

Optimal protocol distinguishes two regimes:
Low energy: $\mathcal{I}_{S_{1} S_{2}}=\beta W$ if $W \leq T S\left(\tau_{S}(\beta)\right)$
High energy: $\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)$ if $W>\operatorname{TS}\left(\tau_{S}(\beta)\right)$
Example: two fermionic modes (not qubits! [5]) with frequency ω Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}+1\right)^{-}$ Pauli principle: $0 \leq N_{S_{i}} \leq 1$ for any state
\Rightarrow maximally useful energy for protocol: $W_{\max }=2 T \ln \left(e^{\beta}+1\right)-$

Generation of Entanglement for Two Fermionic Modes

Energy cost of entanglement: in general difficult to

Previous protocol: only cooling

Fermions: parity superselection rule [6] \Rightarrow allowed state space [and $\left.\mathcal{D}\left(\rho_{S}\right)\right]$ restricted

Optimal protocol: cooling \& heating answer \& depends on the choice of measure

Entanglement of Formation:
$E_{O F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)$ where $\mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right)$ $\left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}$

Role of InTERACTIONS [4]

Interacting systems: $H_{S}=H_{S_{1}}+H_{S_{2}}+H_{I}$ typically initially correlated at any temperature

Example: Fermions with $H_{S_{1}}+H_{S_{2}}=\omega\left(b_{1}^{\dagger} b_{1}+b_{2}^{\dagger} b_{2}\right)$ with $H_{I}=\epsilon_{\text {even }}\left(b_{1} b_{2}+b_{2}^{\dagger} b_{1}^{\dagger}\right)+\epsilon_{\text {odd }}\left(b_{1}^{\dagger} b_{2}+b_{2}^{\dagger} b_{1}\right)$ Spectrum of $H_{S}: \lambda_{1,4}=\omega \pm \sqrt{\omega^{2}+\epsilon_{\text {even }}^{2}}$
$\left.\left.\left.\left.\left.\left.\left.\left.\| \lambda_{1,4}\right\rangle\right\rangle=\frac{1}{\sqrt{\epsilon_{\text {even }}^{2}+\lambda_{1,4}^{2}}}\left(\epsilon_{\text {even }} \| 0\right\rangle\right\rangle-\lambda_{1,4} \| 1_{1}\right\rangle\right\rangle \| 1_{2}\right\rangle\right\rangle\right)$ $\left.\left.\left.\left.\left.\left.\lambda_{2,3}=\omega \pm \epsilon_{\text {odd }} \& \| \lambda_{2,3}\right\rangle\right\rangle=\frac{1}{\sqrt{2}}\left(\| 1_{2}\right\rangle\right\rangle \pm \| 1_{1}\right\rangle\right\rangle\right)$
Initial correlation depends on $\epsilon_{\text {even }} / \omega, \epsilon_{\text {odd }} / \omega \& T$

General relation between work and correlation gain: $\tau \rightarrow \rho$ $\Delta F_{S}=T \Delta \mathcal{I}_{S_{1} S_{2}}+\operatorname{Tr}\left(H_{I}[\rho-\tau]\right)+\Delta \tilde{F}_{S_{1}}+\Delta \tilde{F}_{S_{2}}$ Nonequilibrium free energies w.r.t. the local Hamiltonians

$$
\tilde{F}_{S_{i}}(\rho)=\operatorname{Tr}\left(H_{S_{i}} \rho\right)-T S\left(\rho_{S_{i}}\right)
$$

Initial marginals $\tau_{S_{i}} \neq$ local Gibbs states
General strategies to lower correlation cost
(1) Fix $\operatorname{Tr}\left(H_{I}[\rho-\tau]\right) \&$ lower $\Delta \tilde{F}_{S_{i}}:$ move $\rho_{S_{i}} \rightarrow \gamma_{S_{i}}$ (2) Fix $\Delta \tilde{F}_{S_{i}} \&$ "anti-align" correlation and interaction vectors

Strategies limited by positivity constraints

CONCLUSIONS

- Correlations have intrinsic work cost!
- Noninteracting systems: $\mathcal{I}_{S_{1} S_{2}} \leq \beta W$
- Optimal protocol attains this bound (small W regime)
- Interactions: correlations can be larger $\mathcal{I}_{S_{1} S_{2}}>\beta W$
- General strategies to achieve larger overall correlations
- But: new correlations $\Delta I_{S_{1} S_{2}}$ can be more expensive
- Examples for qubits, bosonic and fermionic modes

References

[1] Perarnau-Llobet, Hovhannisyan, Huber, Skrzypczyk, Brunner, and Acín, Phys. Rev. X 5, 041011 (2015) [arXiv:1407.7765] [2] Huber, Perarnau-Llobet, Hovhannisyan, Skrzypczyk, Klöckl, Brunner, and Acín, New J. Phys. 17, 065008 (2015) [arXiv:1404.2169]. [3] Bruschi, Perarnau-Llobet, Friis, Hovhannisyan, and Huber, Phys. Rev. E 91, 032118 (2015) [arXiv:1409.4647] [4] Friis, Huber, and Perarnau-Llobet, Phys. Rev. E 93, 042135 (2016) [arXiv:1511.08654].
[5] Friis, Lee, and Bruschi, Phys. Rev. A 87, 022338 (2013) [arXiv:1211.7217]
[6] Friis, New J. Phys. 18, 033014 (2016) [arXiv:1502.04476].

