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Quantum Thermodynamics : Work extraction How can work be extracted from a (quantum) system? U\l,
Thermodynamics in the quantum regime, here: as a resource theory Standard paradigm: Unitary U | on gantum system to lower energy =<
R : k/E ' =
esource: Work/Energy = Store energy AF 1n battery.to CONSErve energy == %\"M{a@“&
Free states: thermal states 7(8) = <= | Quantum states useful only if energy can be lowered by unitaries e
: . e ; , o—BH AFE
Free operations: energy conserving unitaties Otherwise states ate called passive , e.g., thermal state 7(8) = <=
- : / P
Interested in extracting, distributing & storing energy On the other hand, two thermal states at different temperatures 7(8) ® T(B") are not passive Y,

N\
But, how complicated are unitaries for arbitrary states? Can such unitaries be realized in practice? \

If not, how much energy may be extracted with practical operations?

What are the fundamental limitations?

What can be achieved practically?

Gaussian Unitaries Gaussian Passivity

Class of easily* implementable operations (*generated by Hamiltonians at most quadratic Definition: Any (not necessarily Gaussian) state is called

in mode operators mp lowest in hierarchy of operations, require only two-body interactions ) average energy cannot be teduced by Gaussian unitaries

Map all Gaussian states to Gaussian states

Theorem 1: Any (not necessarily Gaussian) state of two (noninteracting) bosonic
Gaussian states: ® quantum states of bosonic modes with Gaussian Wigner function modes with frequencies w,and wp > wq 1s Gaussian-passive if and

Fully described by vector of first moments X = (X ) = iaiS only if its first moments vanish, ( X ) = 0, and its covariance matrix I’

and 2" moments collected in covariance matrix I" with is either (1) in Williamson normal form I’ = diag{vg, Va, Vs, 1}, with

components Ty = (XX, +X,;X;) — 2(X; ) (X;) Vg = Vp fOr wa <wp . Or, 1n the case where w, = wy

Quadrature operators, e.g., for n" mode X1 = (a, +al)/V2 (11) in standard form T = (Cgl b?l) ,with C =cl.

Symplectic form Qm, =i [ X0, X, ] —i(an —al,)/V2
Corollary:  Arbitrary state of n bosonic modes (GGaussian-passive iff all two-

displacements D(&) = exp(iX7T Q)

Gaussian unitaries: affine symplectic maps (5.€) : X = SX +¢ mode marginals are Gaussian-passive.

symplectic §Q ST =)

Passivity vs. Gaussian Passivity Work Storage

Passtvity => (Gaussian passivity Gaussian passivity 75} passivity Task: Transfer enerey AE to empty* battery via unitary Us
[*no extractable work ™) initially thermal 7(5)]

For Gaussian 1nitial states: Gaussian passivity => passtvity
Unitaries Uy : 7 +— p with E(p) > E(7) exist but differ in

properties of Urand p , e.g

(energy Variancé) V)= (AH el ] )i

Theorem 2: The 1% and 2°¢ moments of any Gaussian-passive state with entropy S and transition probability Pm_sn = pm [(n| Uy |m) | whete pm = (m
are compatible with a (non-Gaussian) state p with S(p) = Sy and for

which the maximal amount of energy (the energy difference to a Example: Hamiltonian with equal spacing E, 1 —E, =w Y m
thermal state with entropy Sg) is extractable by general unitaries. For T=0: Worst case: V(p) = AB(w(d— 1) — AE)

Gap between Gaussian passivity and passtvity is maximal T =[0X0] Best case: V(p) = (AE — |AE])([AE] — AE)

For general initial state: (energy extractable with Gaussian unitaries)

uniquely defined by X=(X) and T’

Corresponding (Gaussian-passive state not unique

Optimal Precision Battery Chargin R :
P y SIS Minimal Fluctuations
Step I: ’ Step II: o Identify level paits to adjust energy correctly -

Identity level k closest to target energy € Rotate between levels, start with minimal % For integer multiples of w: AW =0 When Ae=m € N Phift by M to the right

Pn Stop when reaching €1 = €

A =
Step 11 o ™ Ve =V(p) = Vopt

Pr
Move largest weights Pn closest to k 0 : A
p, Dnetgy e = E(7)/w

A ~
€g € €=¢€g+ Ac A

2 . 0
I“- AE -.‘I EI

Step 1 ¥ ) 5 | ‘ 5
3 4 5

| | ‘ i o | : For non-integer Ae:
T HEr R b P = it
L1 — ‘ ¥ | | e Start shifting at k = [(Sw)™" In(1/A€)| > 0

4 5 6 7 8 9 10

0

“’ ~ ne- : ' r: AW)? = (AE — |AE|)([AE] — AE) = Vopt (T =0
Initital state 7( | Mlmmalve [mean square deviation from €] but & # € Fine-tune: rotation between k—1 and k ( ) ( I J)” | ) pt( )

Gaussian Battery Charging  Limitation of Gaussian Unitaries? Precision: Optimal and Worst Strategies

Phase space description: P W(@,p) = i fdye™ Y (z+ ¥ pla— ¥) AW = \/AVM Squeezing

Observables: (G), = Tr(Gp) = [dedpW(z,p) g(z,p) with g(z,p) = [dye'P¥ (z— Y| G|z +¥)

ForT' > 0 : variance may decrease 4 L0

For fixed T': Vopt (AE ) bounded by constants >

Vopi[w?le 4 78 it sl e S T 1
A | "

0.8
06 T/w == ()

| NN T =08
0.0 5:- AE[M]
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] Displacements

Gaussian states W(§) = By e exp RGN E (£ - X)) X =(X),, &€=(1,p1,---,2N,PN)
— 2] +

Precision: example: pure displacement D(«)
£2 = 5IX1? = 3lof®

(AHY2 — 1 ooth(82)|X)12 4 X

Gaussian
optimum

LIX2 Variance: (A2£)2 — IXTTX + 1[Tr(I'2) — 2]

= 1 |Tr(D)

For general Gaussian unitaries

Optimal: combination of squeezing & displacement

as |AE —soo: V(p)/AE — 0

A AEAS ABR = AB/2
12 R DR 08 .

i . : opt1mal

Already local unitaries provide advantage B 1 2 3 4 > AR

Correlations can help but play no central role

as |AE — oo: V(p)/AE — const.

Worst case: pure single-mode squeezing

® ° . . . . 2
Fluctuations: e QOptimal: combination of squeezing & displacement: as AE — oo : (AAV? > 0

Worst case: in general also combination of squeezing & displacement Correlations can occur during step 11

References: @ E. G. Brown, N. Friis, and M. Huber, New ]. Phys. 18, 113028 (2016) [arXiv:1608.04977] @ N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]

This work was supported by the Austrian Science Fund (FWF) through the START project Y879-N27 and the joint Czech-Austrian project Mult-QUEST (I 3053-N27). l I I F



