

GAUSSIAN OPERATIONS FOR WORK EXTRACTION AND STORAGE

NICOLAI FRIIS & MARCUS HUBER

Institute for Quantum Optics and Quantum Information – IQOQI Vienna, Boltzmanngasse 3, 1090 Vienna, Austria

Quantum Thermodynamics

Thermodynamics in the quantum regime, here: as a resource theory

- Resource: Work/Energy
- Free states: thermal states $\tau(\beta) = \frac{e^{-\beta H}}{\mathcal{Z}}$
- Free operations: energy conserving unitaries
- Interested in extracting, distributing & storing energy
- What are the fundamental limitations?
- What can be achieved practically? e.g., with Gaussian operations

Work extraction How can work be extracted from a (quantum) system?

- ightharpoonup Standard paradigm: Unitary U_{\downarrow} on qantum system to lower energy
- \rightarrow Store energy ΔE in battery to conserve energy
- Quantum states useful only if energy can be lowered by unitaries

Otherwise states are called *passive*, e.g., thermal state $\tau(\beta) = \frac{e^{-\beta H}}{Z}$

On the other hand, two thermal states at different temperatures $ilde{ au}(eta) \otimes au(eta')$

But, how complicated are unitaries for arbitrary states? Can such unitaries be realized in practice? If not, how much energy may be extracted with practical operations?

Gaussian Unitaries

- Class of easily* implementable operations (*generated by Hamiltonians at most quadratic in mode operators | lowest in hierarchy of operations, require only two-body interactions)
- Map all Gaussian states to Gaussian states

Gaussian states: • quantum states of bosonic modes with Gaussian Wigner function

- Fully described by vector of first moments $\overline{\mathbb{X}} = \langle \mathbb{X} \rangle = (\langle \mathbb{X}_i \rangle)_i$ and 2^{nd} moments collected in covariance matrix Γ with components $\Gamma_{ij} = \langle X_i X_j + X_j X_i \rangle - 2 \langle X_i \rangle \langle X_j \rangle$
- Quadrature operators, e.g., for nth mode $X_{2n-1} = (a_n + a_n^{\dagger})/\sqrt{2}$
- $X_{2n} = -i(a_n a_n^{\dagger})/\sqrt{2}$ • Symplectic form $\Omega_{mn} = i [X_m, X_n]$
- displacements $D(\xi) = \exp(iX^T \Omega \xi)$ \rightarrow Gaussian unitaries: affine symplectic maps $(S, \xi) : \mathbb{X} \mapsto S\mathbb{X} + \xi$ symplectic $S \Omega S^T = \Omega$

Gaussian Passivity

Definition: Any (not necessarily Gaussian) state is called Gaussian-passive if its average energy cannot be reduced by Gaussian unitaries.

Theorem 1: Any (not necessarily Gaussian) state of two (noninteracting) bosonic modes with frequencies ω_a and $\omega_b \geq \omega_a$ is Gaussian-passive if and only if its first moments vanish, $\langle X \rangle = 0$, and its covariance matrix Γ is either (i) in Williamson normal form $\Gamma = \text{diag}\{\nu_a, \nu_a, \nu_b, \nu_b\}$, with $\nu_a \geq \nu_b$ for $\omega_a < \omega_b$. Or, in the case where $\omega_a = \omega_b$

(ii) in standard form $\Gamma = \begin{pmatrix} a\mathbb{1} & C \\ C & b\mathbb{1} \end{pmatrix}$, with $C = c\mathbb{1}$.

Arbitrary state of n bosonic modes Gaussian-passive iff all twomode marginals are Gaussian-passive.

Passivity vs. Gaussian Passivity

ut Gaussian passivity 븆 passivity Passivity \Rightarrow Gaussian passivity

For Gaussian initial states: Gaussian passivity \Rightarrow passivity

For general initial state:

Gaussian ergotropy (energy extractable with Gaussian unitaries) uniquely defined by $\overline{\mathbb{X}} = \langle \mathbb{X} \rangle$ and Γ

Corresponding Gaussian-passive state not unique

Theorem 2: The 1st and 2nd moments of any Gaussian-passive state with entropy S_0 are compatible with a (non-Gaussian) state ρ with $S(\rho) = S_0$ and for which the maximal amount of energy (the energy difference to a thermal state with entropy S_0) is extractable by general unitaries.

→ Gap between Gaussian passivity and passivity is maximal

Work Storage

Task: Transfer energy ΔE to empty* battery via unitary U_{\uparrow} [*no extractable work \Rightarrow initially thermal $\tau(\beta)$]

Unitaries $U_{\uparrow}: \tau \mapsto \rho$ with $E(\rho) > E(\tau)$ exist but differ in properties of U_{\uparrow} and ρ , e.g.

• precision (energy variance) $V(\rho) = (\Delta H_{\rho})^2 = \langle H^2 \rangle_{\rho} - \langle H \rangle_{\rho}^2$

• Work fluctuations $(\Delta W)^2 = \sum p_{m\to n} (W_{m\to n} - \Delta E)^2$ with $W_{m\to n} = E_n - E_m$ and transition probability $p_{m\to n} = p_m |\langle n|U_{\uparrow}|m\rangle|^2$ where $p_m = \langle m|\tau|m\rangle$

Example: Hamiltonian with equal spacing $E_{n+1}-E_n=\omega \ \forall \ m$ For T=0: Worst case: $V(\rho) = \Delta E(\omega(d-1) - \Delta E)$ $\tau = |0\rangle\langle 0|$

Gaussian vs. General

Displacements

Squeezing

Optimal Precision Battery Charging

Step II: • Identify level pairs to adjust energy correctly Step I: • Rotate between levels, start with minimal $\frac{\Delta V_{\epsilon}}{|\Delta \tilde{\epsilon}|}$ • Identify level k closest to target energy ϵ

 \rightarrow Stop when reaching $\tilde{\epsilon}_{\rm I} = \epsilon$ • Move largest weights p_n closest to k $\tilde{V}_{\epsilon} = V(\rho) = V_{\mathrm{opt}}$ Step II Energy $\epsilon_0 = E(\tau)/\omega$ $\epsilon = \epsilon_0 + \Delta \epsilon$ Step I $k = |\epsilon| = 4$

Initial state $\tau(\beta) = \sum p_n |n\rangle\langle n|$ \longrightarrow Minimal \tilde{V}_{ϵ} [mean square deviation from ϵ] but $\tilde{\epsilon}_{\rm I} \neq \epsilon$ For integer multiples of ω : $\Delta W = 0$

Minimal Fluctuations

 $\lim \Delta W = 0$ $\Delta \epsilon = 1$

When $\Delta \epsilon = m \in \mathbb{N}$ \Longrightarrow Shift by m to the right

For non-integer $\Delta \epsilon$:

Single-mode batteries

 $V_{
m opt}[\omega^2]$

• For T > 0: variance may decrease

• For fixed $T \colon V_{\mathrm{opt}}(\Delta E)$ bounded by constants

• Start shifting at $k = \lceil (\beta \omega)^{-1} \ln(1/\Delta \epsilon) \rceil > 0$

• Fine-tune: rotation between k-1 and $k \rightarrow (\Delta W)^2 = (\Delta E - \lfloor \Delta E \rfloor)(\lceil \Delta E \rceil - \Delta E) = V_{\rm opt}(T=0)$

 $\Delta W = \sqrt{V}[\omega]$

Gaussian Battery Charging Limitation of Gaussian Unitaries?

Phase space description: Wigner representation $\rho \mapsto \mathcal{W}(x,p) = \frac{1}{(2\pi)^N} \int dy \, e^{-ipy} \langle x + \frac{y}{2} | \rho | x - \frac{y}{2} \rangle$ Observables: $\langle \hat{G} \rangle_{\rho} = \text{Tr}(\hat{G}\rho) = \int dx dp \, \mathcal{W}(x,p) \, g(x,p)$ with $g(x,p) = \int dy \, e^{ipy} \, \langle x - \frac{y}{2} | \hat{G} | x + \frac{y}{2} \rangle$

Gaussian states $\mathcal{W}(\xi) = \frac{1}{\pi^N \sqrt{\det(\Gamma)}} \exp\left[-(\xi - \overline{\mathbb{X}})^T \Gamma^{-1} (\xi - \overline{\mathbb{X}})\right]$ $\overline{\mathbb{X}} = \langle \mathbb{X} \rangle_{\rho}, \ \xi = (x_1, p_1, \dots, x_N, p_N)^T$ Energy: $\frac{E(\rho)}{\omega} = \frac{1}{4} \left[\text{Tr}(\Gamma) - 2 \right] + \frac{1}{2} \|\overline{\mathbb{X}}\|^2$ Variance: $(\frac{\Delta \hat{H}}{\omega})^2 = \frac{1}{2} \overline{\mathbb{X}}^T \Gamma \overline{\mathbb{X}} + \frac{1}{8} \left[\text{Tr}(\Gamma^2) - 2 \right]$

Precision: example: pure displacement $D(\alpha)$ For general Gaussian unitaries

 $\frac{\Delta E}{\omega} = \frac{1}{2} \|\overline{\mathbf{X}}\|^2 = \frac{1}{2} |\alpha|^2$

• Optimal: combination of squeezing & displacement $(\frac{\Delta \hat{H}}{\omega})^2 = \frac{1}{2} \coth(\frac{\beta \omega}{2}) \|\overline{\mathbf{X}}\|^2 + \frac{V(\tau)}{\omega^2}$ as $\Delta E \to \infty$: $V(\rho)/\Delta E \to 0$ as $\Delta E \to \infty$: $V(\rho)/\Delta E \to \text{const.}$ • Worst case: pure single-mode squeezing

Fluctuations: • Optimal: combination of squeezing & displacement: as $\Delta E \to \infty$: $\frac{(\Delta W)^2}{\Delta E} \to 0$

• Worst case: in general also combination of squeezing & displacement

• N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]

Precision: Optimal and Worst Strategies

Multi-mode batteries Already local unitaries provide advantage • Correlations can occur during step II -Correlations can help but play no central role **References**: • E. G. Brown, N. Friis, and M. Huber, New J. Phys. 18, 113028 (2016) [arXiv:1608.04977]

Gaussian

optimum