

IMPLEMENTING QUANTUM CONTROL FOR UNKNOWN SUBROUTINES

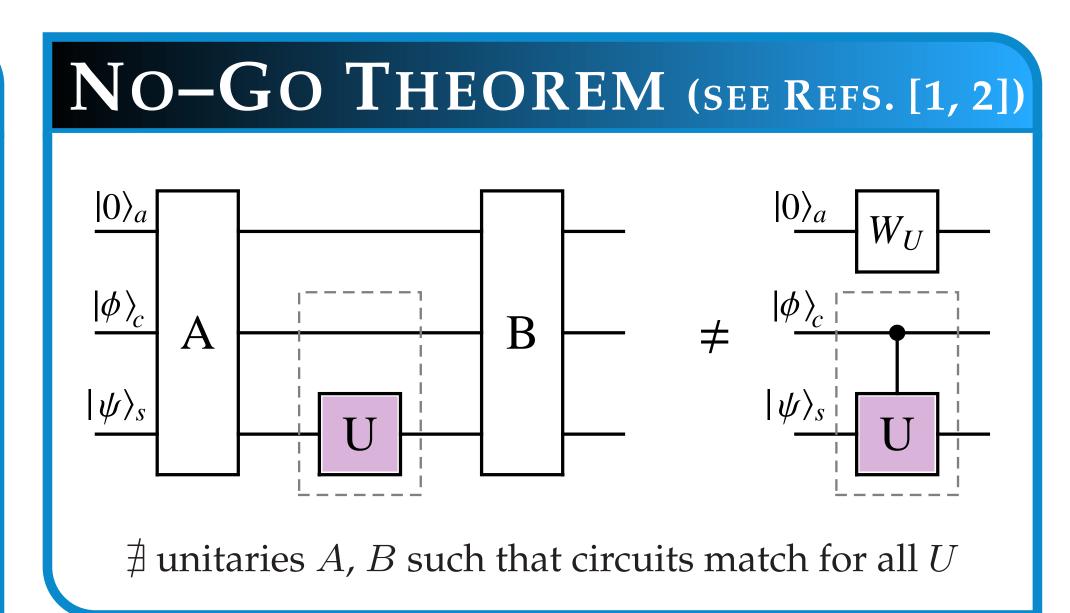
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Technikerstraße 21a, 6020 Innsbruck, Austria ² Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

³ Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

Nicolai Friis¹, Vedran Dunjko^{1,2,3}, Wolfgang Dür², and Hans J. Briegel^{1,2}

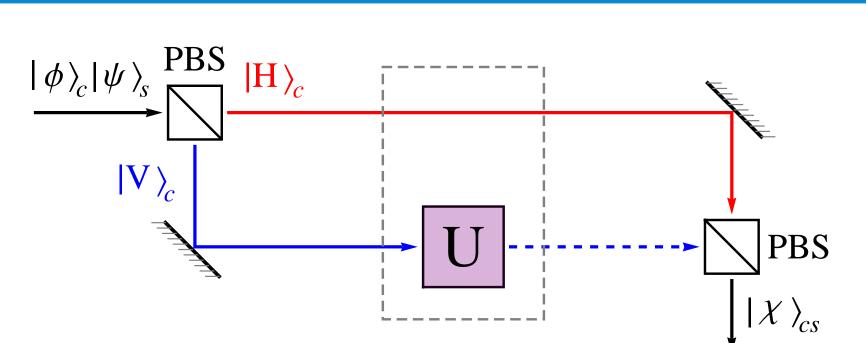
Introduction & Motivation

Recently, there has been renewed interest in the problem of controlling unknown operations [1, 2], previously addressed in an experiment [3], and the related problem of controlling their order [4], within the circuit model of quantum computation. From a computational point of view, it is desirable to equip quantum computers with generic circuits realizing "if" clauses that take as their input a number of unknown gates and implement these conditionally on the state of a control qubit. Given an unknown unitary U, one naively expects that it can be inserted into a prefabricated circuit that is independent of U, which performs the operation $\operatorname{ctrl}-U$. However, various no-control theorems [1, 2] show that such constructions are not allowed by the mathematical structure of quantum mechanics. Here [5], we discuss the implications of these theorems, and introduce a novel scheme that allows to add quantum control to unknown unitaries for trapped ions, as well as setups for ions and photons that can realize the quantum-controlled switch of operations.



ADDING CONTROL POSSIBLE IN OPTICAL SETTINGS (SEE REF. [1, 3]) —PARADOX?

- Control in polarization state $|\phi\rangle_c$ of single photon: $|\phi\rangle_c = \alpha |H\rangle_c + \beta |V\rangle_c$
- \bullet *U* acts on additional degrees of freedom (e.g., orbital angular momentum) encoded in $|\psi\rangle_s$
- Polarizing beam splitters (PBSs) switch control between polarization and spatial degree of freedom
 - $|\chi\rangle_{cs} = \alpha |H\rangle_{c} |\psi\rangle_{s} + \beta |V\rangle_{c} U |\psi\rangle_{s}$



- How is this possible? Theorem cannot be broken!
- Inspection of Dashed box: visual similarity to circuit, but circuit guarantees single qubit input in each "wire"
- Schematic diagrams, on the other hand, do not generally obey rules of circuit diagram.
- ullet Alternative view: control not "added" to U at all, action of device spatially localized, hence conditioned on position

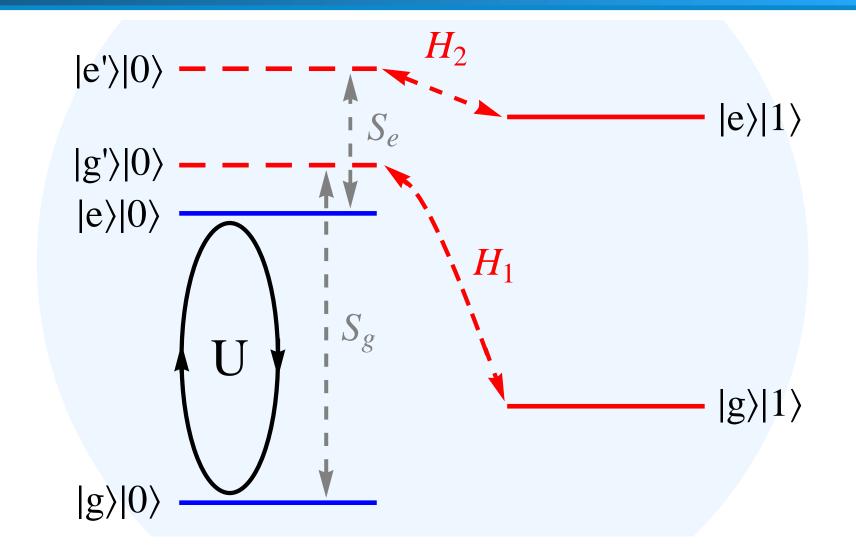
ION TRAPS



Paul trap: individually addressable ions confined in harmonic potential; Common vibrational mode cooled to ground state; Metastable electronic transition encodes qubit; Picture courtesy of B. Lanyon

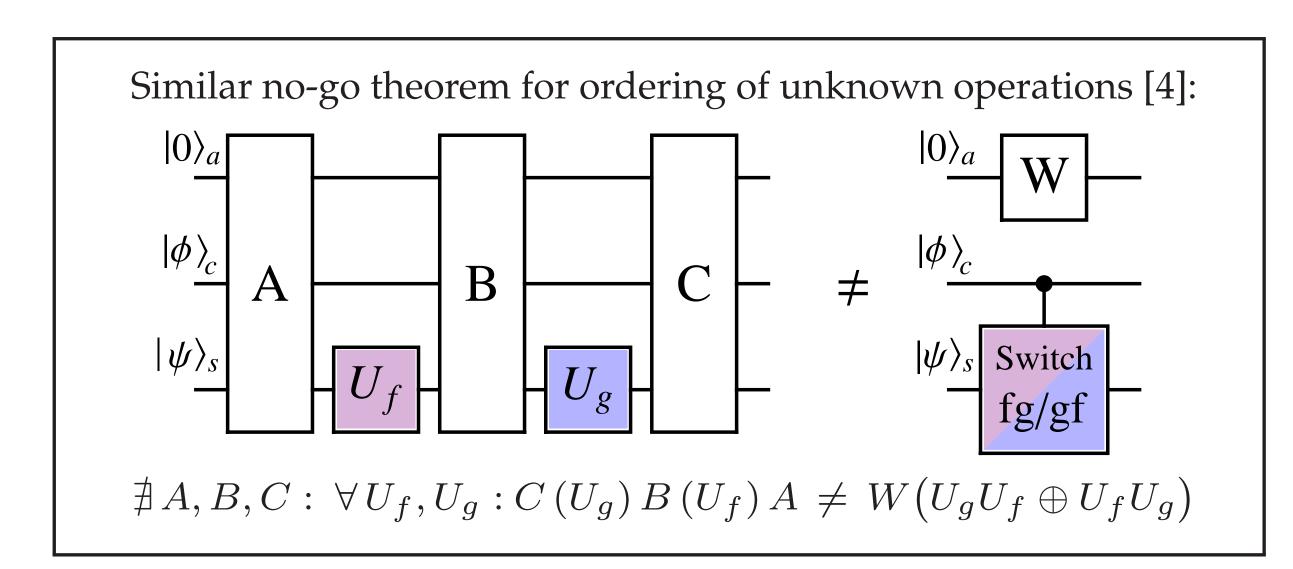
QUANTUM CONTROL FOR TRAPPED IONS (SEE REF. [5])

- (i) Cirac-Zoller method [6]: blue-detuned laser swaps the qubit state from ion 1 to a common vibrational degree of freedom, driving the transition from $|g\rangle_1|0\rangle$ to $|e\rangle_1|1\rangle$, which transforms the state from $(\alpha |g\rangle_1 + \beta |e\rangle_1)|\psi\rangle_2|0\rangle$ to $|e\rangle_1 |\psi\rangle_2 (\alpha |1\rangle + \beta |0\rangle).$
- (ii) Red-detuned hiding pulses (H_1 and H_2) on ion 2 transfer the populations of $|g\rangle_2|1\rangle$ and $|e\rangle_2|1\rangle$ to the auxiliary levels $|g'\rangle_2|0\rangle$ and $|e'\rangle_2|0\rangle$, respectively, which yields $|e\rangle_1 \left(\alpha |\psi'\rangle_2 |1\rangle + \beta |\psi\rangle_2 |0\rangle\right).$
- Unknown unitary: The pulse realizing U for ion 2, drives only the transition between $|g\rangle_{2}|0\rangle$ and $|e\rangle_{2}|0\rangle$: $|e\rangle_1 \left(\alpha |\psi'\rangle_2 |1\rangle + \beta U |\psi\rangle_2 |0\rangle\right).$
- The hiding pulses H_1 and H_2 are used to reverse the process of step (ii), such that $|\psi'\rangle_2 \rightarrow |\psi\rangle_2$.



(v) Final pulse on ion 1 swaps control back from the vibrational mode, $|e\rangle_1|1\rangle \to |g\rangle_1|0\rangle$, which provides $(\alpha |g\rangle_1 |\psi\rangle_2 +$ $\beta |e\rangle_1 U |\psi\rangle_2 |0\rangle.$

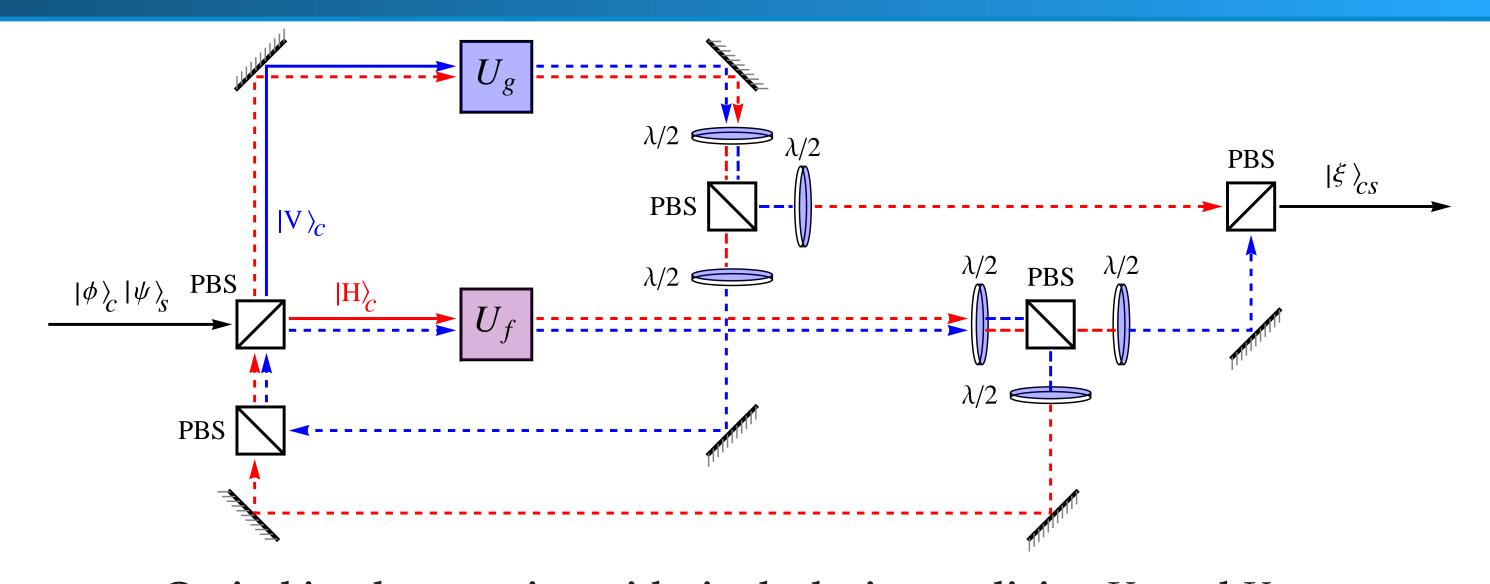
THE CONTROLLED SWITCH (SEE REF. [4, 5])



Ion implementation with "single" laser pulses for U_f and U_g :

- Steps (i),(ii) as before; then (iii) with pulse U_g ; reflect used pulse by mirror
- σ_x -like pulses $S_g = |g\rangle\langle g'| + |g'\rangle\langle g|$ and $S_e = |e\rangle\langle e'| + |e'\rangle\langle e|$ (see above)
- Pulse U_f ; reflected pulse U_g ; repeat S_g , S_e ; reflected pulse U_f ; (iv),(v) as before

As far as adversary is concerned: pulses used only once, one photon used per pulse



Optical implementation with single devices realizing U_f and U_g :

- Single photon in state $|\phi\rangle_c |\psi\rangle_s$; polarization state $|\phi\rangle_c = \alpha |H\rangle_c + \beta |V\rangle_c$ as control
- State $|\psi\rangle_s$ encoded in additional degree of freedom (e.g., orbital angular momentum)
- Polarizing beam splitters (PBSs) transmit (reflect) horizontal (vertical) polarization
- Half-wave plates $(\lambda/2)$ exchange polarizations, while leaving $|\psi\rangle_{\varsigma}$ invariant
- U_f and U_g act only on system; final state $|\xi\rangle_{cs} = \alpha |H\rangle_c U_g U_f |\psi\rangle_s + \beta |V\rangle_c U_f U_g |\psi\rangle_s$

CONCLUSIONS

- Have shown: can add control also in ion-trap setup; method easily generalizes to control of n qubits
- Can implement ctrl–Switch in ionic & photonic setups
- No paradoxes; make use of additionally available degrees of freedom or dimensions of physical system
- Other setups: possibility to add control whenever only restricted part of the Hilbert space is used for qubits
- Significance for adversarial settings: provider vs. user

REFERENCES

- M. Araújo, A. Feix, F. Costa, and Č. Brukner, e-print arXiv:1309.7976 [quant-ph] (2013).
- [2] J. Thompson, M. Gu, K. Modi, and V. Vedral, e-print arXiv:1310.2927 [quant-ph] (2013).
- X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P. Lanyon, and J. L. O'Brien, Nat. Commun. 2, 413 (2011).
- G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, Phys. Rev. A 88, 022318 (2013) [arXiv:0912.0195].
- N. Friis, V. Dunjko, W. Dür, and H. J. Briegel, Phys. Rev. A 89, 030303(R) (2014) [arXiv:1401.8128].
- J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

FUNDING & ACKNOWLEDGEMENTS