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INTRODUCTION & MOTIVATION
Recently, there has been renewed interest in the problem of controlling unknown operations [1, 2], previously addressed in an exper-

iment [3], and the related problem of controlling their order [4], within the circuit model of quantum computation. From a computa-

tional point of view, it is desirable to equip quantum computers with generic circuits realizing “if " clauses that take as their input a

number of unknown gates and implement these conditionally on the state of a control qubit. Given an unknown unitaryU , one naively

expects that it can be inserted into a prefabricated circuit that is independent of U , which performs the operation ctrl–U . However,

various no-control theorems [1, 2] show that such constructions are not allowed by the mathematical structure of quantum mechanics.

Here [5], we discuss the implications of these theorems, and introduce a novel scheme that allows to add quantum control to unknown

unitaries for trapped ions, as well as setups for ions and photons that can realize the quantum-controlled switch of operations.

NO–GO THEOREM (SEE REFS. [1, 2])
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ADDING CONTROL POSSIBLE IN OPTICAL SETTINGS (SEE REF. [1, 3]) —PARADOX?
• Control in polarization state |φ〉c of single photon:

|φ 〉c = α |H 〉c+β |V 〉c
• U acts on additional degrees of freedom (e.g., orbital angular

momentum) encoded in |ψ〉s
• Polarizing beam splitters (PBSs) switch control between

polarization and spatial degree of freedom

|χ 〉cs = α |H 〉c|ψ 〉s+β |V 〉cU |ψ 〉s
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• How is this possible? Theorem cannot be broken!

• Inspection of Dashed box: visual similarity to circuit, but circuit
guarantees single qubit input in each “wire"

• Schematic diagrams, on the other hand, do not generally obey
rules of circuit diagram.

• Alternative view: control not “added" to U at all, action of device
spatially localized, hence conditioned on position

ION TRAPS

Paul trap: individually addressable ions confined in harmonic
potential; Common vibrational mode cooled to ground state;

Metastable electronic transition encodes qubit;
Picture courtesy of B. Lanyon

QUANTUM CONTROL FOR TRAPPED IONS (SEE REF. [5])

(i) Cirac-Zoller method [6]: blue-detuned laser swaps the qubit
state from ion 1 to a common vibrational degree of free-
dom, driving the transition from |g〉1 |0〉 to |e〉1 |1〉, which
transforms the state from

(
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)
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)
.

(ii) Red-detuned hiding pulses (H1 and H2) on ion 2 trans-
fer the populations of |g〉2 |1〉 and |e〉2 |1〉 to the auxil-
iary levels
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(iii) Unknown unitary: The pulse realizing U for ion 2,
drives only the transition between |g〉2 |0〉 and |e〉2 |0〉:
|e〉1

(
α
∣∣ψ′〉

2
|1〉+ β U |ψ〉2 |0〉

)
.

(iv) The hiding pulsesH1 andH2 are used to reverse the process
of step (ii), such that

∣∣ψ′〉
2
→ |ψ〉2 .
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(v) Final pulse on ion 1 swaps control back from the vibrational
mode, |e〉1 |1〉 → |g〉1 |0〉 , which provides

(
α |g〉1 |ψ〉2 +

β |e〉1 U |ψ〉2
)
|0〉.

THE CONTROLLED SWITCH (SEE REF. [4, 5])

Similar no-go theorem for ordering of unknown operations [4]:
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Ion implementation with “single" laser pulses for Uf and Ug :

• Steps (i),(ii) as before; then (iii) with pulse Ug ; reflect used pulse by mirror

• σx-like pulses Sg = |g〉
〈
g′
∣∣ + ∣∣g′〉〈g| and Se = |e〉

〈
e′
∣∣ + ∣∣e′〉〈e| (see above)

• Pulse Uf ; reflected pulse Ug ; repeat Sg , Se; reflected pulse Uf ; (iv),(v) as before

As far as adversary is concerned: pulses used only once, one photon used per pulse
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Optical implementation with single devices realizing Uf and Ug :

• Single photon in state |φ 〉c |ψ 〉s; polarization state |φ 〉c = α |H 〉c+β |V 〉c as control

• State |ψ 〉s encoded in additional degree of freedom (e.g., orbital angular momentum)

• Polarizing beam splitters (PBSs) transmit (reflect) horizontal (vertical) polarization

• Half-wave plates (λ/2) exchange polarizations, while leaving |ψ 〉s invariant

• Uf and Ug act only on system; final state |ξ 〉cs = α |H 〉c UgUf |ψ 〉s + β |V 〉cUfUg |ψ 〉s

CONCLUSIONS
• Have shown: can add control also in ion-trap setup;

method easily generalizes to control of n qubits
• Can implement ctrl–Switch in ionic & photonic setups
• No paradoxes; make use of additionally available

degrees of freedom or dimensions of physical system
• Other setups: possibility to add control whenever only

restricted part of the Hilbert space is used for qubits
• Significance for adversarial settings: provider vs. user
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