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“Thermodynamics is a funny subject. The first time you go through it, you don’t

understand it at all. The second time you go through it, you think you understand

it, except for one or two points. The third time you go through it, you know you

don’t understand it, but by that time you are so used to that subject, it doesn’t

bother you anymore."

Arnold Sommerfeld [1, p. 1]

“Do you guys just put the word ‘quantum’ in front of everything?"

Scott Lang (Paul Rudd), Ant-Man and the Wasp (00:33:44), Peyton Reed (director),

Walt Disney Studios Motion Pictures (distributor), 2018

“Eine Heizung funktionert so: zuerst nimmt man die Kälte, und schmeißt sie in

den Mistkübel. Dann nimmt man Papier, und daraus wird dann Kohle, und die

wird dann zu Feuer. Und dann kommt die Feuerwehr und löscht."

(Translation “A radiator works like this: first you take the cold and throw it in the

the dustbin. Then one takes paper, which becomes coal, and that then becomes fire.

Then the fire fighters come and extinguish it.")

Noah Friis (3 years old, private communication, 8 August 2021)

“Ph’nglui mglw’nafh Cthulhu R’lyeh wgah’nagl fhtagn"

H. P. Lovecraft, The Call of Cthulhu, in Weird Tales, Vol. 11, No. 2, 1928
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Part I

From Thermodynamics to Quantum

Information – and Back

I.1 Introduction

While the historical roots of modern thermodynamics go back to the nineteenth century and

the foundational works of renowned figures such as Sadi Carnot, Rudolf Clausius, William

Thomson (Lord Kelvin), James Clerk Maxwell, Ludwig Boltzmann, Max Planck, and J. Willard

Gibbs (amongst many others, for an overview, see, e.g., the introductory textbook Ref. [2]),

the origins of quantum information can only be traced back to the late twentieth century.

Although some seminal works, in particular, by Albert Einstein, Boris Podolsky, and Nathan

Rosen [3] as well as by Erwin Schrödinger [4], identified entanglement as a crucial feature

of quantum theory already in 1935, the importance of these works was only widely recog-

nized much later, most notably by John Stewart Bell in 1964 [5], whose famous inequality (or

variants thereof, e.g., due to Clauser, Horne, Shimony and Holt [6]) was subsequently tested

in 1972 by Freedman and Clauser [7] and throughout the 1980s by Aspect, Grangier, Roger, and

Dalibard [8–10]. In parallel, first concerted efforts towards quantum communication proto-

cols (by Wiesner [11], and Bennett and Brassard [12]), quantum computing (by Bennett [13],

Poplavskii [14], Benioff [15], Feynman [16], Toffoli [17], Deutsch [18], Igeta and Yamamoto [19],

and Milburn [20]), and the general information-theoretic understanding of quantum me-

chanics (e.g., by Holevo [21], Ingarden [22], Park [23], Dieks [24], Wootters and Zurek [25], and

Werner [26]) were made throughout the 1960s, 1970s, and 1980s, before the field of quantum

information and computation decisively built up momentum in the 1990s, with a first major

textbook (which is still of high relevance today) was published by Nielsen and Chuang [27] in

2000. What is interesting to note here is that some of the earliest contributions to the theory

of quantum computing, namely Poplavskii’s article [14] entitled (in its English translation)

‘Thermodynamic models of information processes’ as well as Bennett’s paper [28] ‘The thermody-

namics of computation – a review’, explicitly reference thermodynamics as centrally important

for considerations about quantum computers. Indeed, the relevance of thermodynamics is

not limited to quantum information and computation but more broadly to information theory

in general. This is witnessed, e.g., by the impact on modern quantum thermodynamics of

even earlier work by Landauer [29], which connects thermodynamics to classical comput-

ing.

The common denominator of thermodynamics and quantum information (and quan-
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PART I FROM THERMODYNAMICS TO QUANTUM INFORMATION

tum computation) is information. Whereas it is obvious that quantum information theory

is concerned with studying how information can be encoded, manipulated, and communi-

cated using quantum systems (see, e.g., [27, 30]), it may not be as clear immediately how

crucial the notion of information is in thermodynamics. Historically, thermodynamics is

concerned with physical systems that have many degrees of freedom, typically too many to

keep track of all of them. Instead, one often has direct access only to a few macroscopically

observable parameters, such as energy, temperature, or pressure. Classical thermodynam-

ics provides a quantitative description of these parameters via the laws of thermodynamics.

Meanwhile, statistical mechanics underpins this framework by providing microscopic ex-

planations for the macroscopically observed phenomena. At the heart of these explanations

lies the information that is available about a given system. In other words, the starting point

of statistical mechanics is the assignment of probabilities to the microstates of a system via

statistical ensembles, given information about the system’s energy, composition, and inter-

action with its environment (e.g., whether the system is in thermal equilibrium with a heat

bath or a non-equilibrium system), as discussed, for instance, in [31]. While information

about a few macroscopic parameters of a quantum system may thus be available, this typi-

cally means that there also is an enormous lack of information about the specific microstate

of the system.

In particular, one can ask which macrostate should be assigned to a (quantum) system

in thermal equilibrium with respect to an assumed external heat bath at fixed tempera-

ture when all that is known is its (average) energy. By Jayne’s maximum entropy prin-

ciple [31, 32], the unique answer is: a thermal state1, i.e., a mixed state (represented by

a density operator) that maximizes the (von Neumann) entropy for fixed average energy.

This captures the idea that, when in doubt, it is prudent to assume the minimal amount of

information (hence the maximal amount of entropy) about the system. Conversely, we can

identify the thermal state as the state with minimal (average) energy given fixed entropy.

Information-theoretic considerations hence enter thermodynamics at a fundamental level.

One aim of this habilitation thesis is to draw attention to the fact that the converse is also

true. In other words, here we take the point of view that thermodynamic considerations

also enter the foundations of quantum information theory, as we shall elaborate on shortly.

The premise of many quantum information processing tasks is the assumed ability to

prepare pure quantum states, to perform unitary operations, and to carry out ideal projec-

tive measurements, at least to within any desired margin of error. And, indeed, in modern

quantum optics and quantum technologies, we have unprecedented control over individ-

ual, or small groups of quantum systems. For instance, current state-of-the-art setups for

quantum computing are able to control around 20-50 qubits using trapped ions [33–35],

with similar qubit numbers achieved in superconducting processors by companies such as

1Also called a Gibbs state. When the system is assumed to be of fixed composition but may be in states of

varying energy, this corresponds to the canonical ensemble, which we will consider here unless stated other-

wise.
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PART I FROM THERMODYNAMICS TO QUANTUM INFORMATION

Google [36], IBM [37], and Rigetti Computing [38], and up to 10 qubits can currently be

fully controlled in solid state memories [39]. At the same time, gate fidelities of well above

99% have been reported for single- and two-qubit gates for physical qubits in different plat-

forms [40, 41], and even logical entangling gates have recently been realized [42]. These

and many other impressive developments notwithstanding, it is clear from a fundamental

thermodynamic perspective that pure states can only ever be prepared approximately.

More specifically, the third law of thermodynamics dictates that no (quantum) system

can be cooled to the ground state (a pure state for non-degenerate Hamiltonians) with finite

resources [43–48]. Here, resources include the time and energy invested in the prepara-

tion, but also the complexity (qualitatively, the Hilbert space dimension that is assumed

to be fully and exactly controllable via the application of arbitrary unitary operations) of

the involved quantum systems. By extension, the third law stipulates that no pure state

can be prepared exactly, even if perfectly unitary transformations could be applied to any

controlled system. However, even in the most well-isolated vacuum chambers, residual

particles remain and may interact with any controlled system therein, leading to decoher-

ence and noise. Meanwhile, the application of unitaries themselves often involves precise

timing of interactions, which in turn relies on perfect clocks. The latter, of course also have

intrinsical statistical inaccuracies (see, e.g., [49] for a discussion) in any finite-resource sce-

nario. Finally, as we have shown in [50], this implies that no ideal projective measurement

can be carried out with finite resources either, unless one initially already has complete

knowledge of the respective quantum systems and may hence assume the availability of

(zero-temperature) pure states a priori. Conversely, we thus see that carrying out state

preparation, (quantum) computation, and measurements in a precise and controlled way

requires the investment of time and energy to move systems out of inevitable thermal equi-

librium that reflects one’s incomplete information about the system in question. Thus, it

becomes evident that thermodynamic considerations naturally enter the domain of quan-

tum information theory — and vice versa [51].

Over the past decade, this synergy between thermodynamics and (quantum) infor-

mation theory has shaped and propelled the field of quantum thermodynamics, which,

broadly speaking, is concerned with thermodynamics in the quantum regime, and includes

(but is not limited to) such topics as equilibration and thermalization of quantum systems,

quantum heat engines, storage of work in ‘quantum batteries’, work extraction from and

refrigeration of quantum systems, fluctuations and measurements of work, irreversibility in

out-of-equilibrium processes, thermodynamics of strongly coupled systems, and information-

theoretic approaches to thermodynamics. Overviews over these, and a variety of other as-

pects of quantum thermodynamics can be found in the respective chapters of [52].

Here, we discuss some exemplary situations in quantum thermodynamics (covered in

detail in the selected publications [50, 53–58] that are presented in full in Part II), which

highlight the interplay between thermodynamics and quantum information theory, and

11



PART I FROM THERMODYNAMICS TO QUANTUM INFORMATION

their respective resources. We consider situations where (i) we have incomplete information

about the quantum systems in question and we hence assume that these systems are initially

at thermal equilibrium with respect to their environment, and where (ii) work is either con-

verted into resources valuable from an information-theoretic point of view [50, 53, 54, 57]

(i.e., various types of correlations), or where the extraction [55], storage [56], and estima-

tion [58] of work is restricted by information-theoretic limitations (e.g., the complexity of

the allowed operations).

This habilitation thesis is organized as follows. To provide some context for the publica-

tions presented later on, the remaining sections of Part I provide an overview over pertinent

concepts and definitions in quantum thermodynamics, quantum optics, and quantum in-

formation. In particular, Sec. I.2 examines the problem of defining and estimating work

and its fluctuations. In Sec. I.3 we then briefly review recent approaches for understanding

fundamental and practical limitations on work extraction and storage in quantum optical

systems. In Sec. I.4, we then turn to conversion of work into correlations. For this purpose,

we discuss different types of correlations and how they can be established at the expense of

work. Section I.5 the concludes Part I with a brief summary and outlook on open problems.

In Part II, we then present the mentioned selected publications [50, 53–58].

I.2 Work and Work Estimation

I.2.A Heat and Work

A conceptually fundamental distinction that is made in (classical) thermodynamics is that

between heat and work. The first law of thermodynamics stipulates that the change in in-

ternal energy can be assigned to changes in either one of these two contributions. Whereas

heat corresponds to changes of energy on the microscopic level, work is associated to macro-

scopic changes in energy. In other words, heat is energy attributed to unordered thermal

motion of the microscopic constituents of a system, whereas work performed by a system

is energy that is transferred from one system to another via the exertion of macroscopic

mechanical forces that are measurable and can in turn be stored for later use as potential

energy, e.g., by lifting a weight against the gravitational pull. In this sense, work is ‘ordered’

energy.

Heat and work can in principle be converted into each other, but the laws of thermody-

namics enshrine the observation that there is a preferred direction to this conversion, i.e.,

work can in principle be turned into heat at unit efficiency, but the conversion of heat into

work is limited in its efficiency. As argued, e.g., in [2, pp. 117], the first law of thermody-

namics immediately provides the bound that a heat engine which uses an input δQ ≥ 0 of

heat and attempts to turn it into work δW must not violate the relation δW ≤ δQ. Mean-

while, a heat engine that harnesses the flow of heat (according to the second law of ther-

modynamics) from a hot bath at temperature TH to a cold bath at temperature TC in order

12



PART I FROM THERMODYNAMICS TO QUANTUM INFORMATION

to perform work on a working substance can never achieve a conversion of heat into work

at an efficiency beyond the Carnot efficiency ηmax = 1 − TC/TH. This implies a notion of

irreversibility in the conversion of work to heat.

A different way of expressing this irreversibility is via the second law phrased as a state-

ment about entropy S. For an idealized closed system that is initially at thermal equilibrium

with its environment at temperature T and which may exchange no matter but only energy

with the latter, infinitesimal changes dS of the entropy due to an irreversible process are

bounded from below by the ratio of δQ, the infinitesimal increment2 of heat transferred to

the system, and the environment temperature T , that is dS ≥ δQ/T , with equality when

the process is reversible. Since δQ ≥ 0, an implication of the above is the observation that

the entropy of any closed system may never decrease: dS ≥ 0. In this sense, irreversibil-

ity is tied to an increase in entropy (or, from an information-theoretic point of view: loss

of information), which is in turn associated (albeit not identified) with the transfer of heat.

Conversely, a process in a closed system for which dS = 0 also satisfies δQ = 0 (for any

finite environment temperature), and all changes in internal energy can be attributed to

work in such a case. Heat and work can thus both be considered to be thermodynamical

resources, but there is a clear hierarchy between them: work is strictly more useful than

heat.

This leaves us with the question of identifying the contributions of heat and work in

general irreversible processes. Now, in classical macroscopical examples such as a weight

that has been lifted to a particular height and is being held in place there, it is reasonable to

say that the work has been stored in the system in the form of potential energy and work

can hence be attributed to the system. But of course the premise for such a statement is

that the weight is at a well-defined height, and hence has a well-defined potential energy.

In practice this is generally not the case: measurements of the height will vary ever so

slightly in their values, leading to fluctuations in the assigned work value. Nevertheless,

in a macroscopic setting one may typically safely assume that the fluctuations around the

mean are small, much smaller than the attributed work, and can thus be disregarded for

most practical purposes. However, there is no reason to expect that this is the case in the

quantum domain, and even providing a definition for work is no longer straightforward,

as we will discuss in the next section.

I.2.B Work in Quantum Thermodynamics

Along with ever-increasing control over quantum systems and unprecedented access to

technologies at the nanoscale which have been brought on by the second quantum revolu-

tion [59] come questions regarding their fundamental limitations. Currently, quantum tech-

nologies are considered to be operating in what is often referred to as the noisy intermediate-

2Note that the difference in notation between infinitesimal increments dS of entropy and δQ of heat high-

lights that the entropy is a function of the system state only, whereas heat is not.
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PART I FROM THERMODYNAMICS TO QUANTUM INFORMATION

scale quantum (NISQ) regime, see, e.g. [60], a name one might consider a portent in the

sense that itf implies the hope that further technological advances will lead to noise-robust

large-scale quantum devices in the future. In this endeavour, residual heat and noise are

ever-present adversaries, and moving systems away from thermal equilibrium with their

surroundings requires sufficient control, as well as the investment of time and energy. In-

deed, from a fundamental thermodynamic perspective, pure states can only be prepared

approximately since Nernst’s unattainability principle [61, 62] — the third law of thermo-

dynamics— demands that infinite resources are required to cool any system to its ground

state. To accurately assess the resources required for a specific task, it must therefore in

principle be assumed that the respective system is initially in a thermal state and that work

must be invested to change this.

But what is a suitable definition of work in the quantum regime? What can be considered a

suitable representation of the ‘weight’ that is often so evocatively associated with work in

classical thermodynamics. In the context of quantum thermodynamics, the notion of work is

ultimately tied to the quantum systems that one assumes may store or provide energy, and

to the control that one assumes to be able to enact over these systems and their interactions

with each other and with the environment. Consequently, a number of different approaches

to this problem have emerged, and we will here take a glance at a few of them.

One possibility, argued for by Reeb and Wolf [63], is to consider a system S in contact

with a thermal bath B, initially in some joint state ρSB. The closed joint system is then

assumed to be controlled sufficiently well so that it can be manipulated by a global unitary

transformation USB. Then, for a fixed joint Hamiltonian HSB, the work W necessary to

move the system from its initial state ρS = TrB

(
ρSB

)
to the final state ρ̃S = TrB

(
USB ρSB U

†
SB

)

is defined via the average energy change of the joint system, i.e.,

W = Tr
(
HSB

[
ρSB − USB ρSB U

†
SB

])
. (I.1)

An alternative to this viewpoint was discussed by Alicki and members of the Horodecki

family in Ref. [64], where the control over the system of interest is phrased in terms of time-

dependent coupling (with otherwise fixed interaction Hamiltonians) to reservoirs and an

external driving resulting in an explicitly time-dependent system Hamiltonian HS(t). The

contributions of heat and work to the total system energy change dE(t), where E(t) =

Tr
(
ρS(t)HS(t)

)
, are then identified with the changes associated with the state and Hamilto-

nian, respectively. In particular, work is defined as

W (t) =

t∫

0

dt′ Tr
(
ρS(t′)

dHS(t′)
dt′

)
. (I.2)

Both of these approaches follow certain intuitions about the qualities of heat and work,

but ultimately do not provide an operational interpretation for the specific work values. In

particular, no explicit system for work storage — no ‘weight’ — features in these models.
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PART I FROM THERMODYNAMICS TO QUANTUM INFORMATION

In contrast, exactly such an explicit representation of a work-storage system has been con-

sidered by Åberg [65], as well as by Brunner, Linden, Popescu and Skrzypczyk [66]. There,

work and its statistics can be defined directly via the Hamiltonian HW along with the re-

duced states ρinitial
W and ρfinal

W , before and after an interaction with the system S, respectively,

i.e.,

W = Tr
(
HW

[
ρfinal

W − ρinitial
W

])
. (I.3)

A drawback of this approach identified by Gallego, Eisert and Wilming in Ref. [67] is that a

work value is assigned to a change of average energy that could be brought about by what

would (classically) be considered a source of heat, e.g., thermalization of the work-storage

system. The authors of [67] further put forward an axiomatic approach to the definition of

work in quantum thermodynamics. That is, work is abstractly defined (non-uniquely) as a

functionW (ρinitial → ρfinal), assigning a real work value to each state transformation from an

initial state ρinitial to a final state ρfinal, such that certain axioms are fulfilled. For instance, it

is argued that the work value should be expressible as a difference of functions of the initial

and final state, i.e., W (ρinitial → ρfinal) = g(ρfinal) − g(ρinitial) for some suitable function g.

One candidate for the function g(ρ) is the free energy F (ρ) with respect to a heat bath at

temperature T , given by

F (ρ) = E(ρ) − T S(ρ), (I.4)

where E(ρ) = Tr(Hρ) is the average energy of the system and S(ρ) = −Tr
(
ρ ln ρ

)
is its

von Neumann entropy. Such an axiomatic approach is thus useful to narrow down the list

of potential candidates for work quantifiers but, unless a particular one of them is uniquely

determined by the axioms, there is still room for ambiguity in the interpretation of the work

values.

The free energy F (ρ) indeed has appealing properties that one would desire for a work

quantifier. In particular, for given system Hamiltonian HS and fixed heat-bath temperature

T , it is minimal for a thermal state of the same temperature. Such a thermal state τS is of the

form

τS(β) =
e−β HS

Z =

∑
n
e−β En |En 〉〈En |
∑
m
e−β Em

, (I.5)

where β = 1/T is the inverse temperature3 of the heat bath, the system Hamiltonian has the

spectral decompositionHS =
∑
n
En |En 〉〈En |, andZ = Tr

(
e−β HS

)
is the partition function.

We can then perform a quick calculation to determine the free energy of such a thermal state

as

F (τS) = Tr
(
τSHS

)
+ T Tr

(
τS ln

[
e−β HS
Z

])
= Tr

(
τSHS

)
+ T Tr

(
τS
[
−β HS − ln(Z)

])

= Tr
(
τSHS

)
− βT Tr

(
τSHS

)
− T ln(Z) Tr

(
τS
)

= −T ln(Z). (I.6)
3We use units where kB = ~ = 1 throughout.
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In addition, the thermal state maximizes the entropy S at fixed average energy E, and

simultaneously minimizes the average energy at fixed entropy. In the following, we will

discuss the relationship between the free energy and work in more detail.

I.2.C Work Estimation

A different point of view to that described in the previous section arises in stochastic ther-

modynamics (see, e.g., the reviews [68–70]), where work (and heat) take the roles of stochas-

tic random variables. As such, work performed on (or extracted from) a system in a given

process Λ is characterized by a probability distribution, whose average provides an ex-

pected work value 〈W 〉. Such a work distribution also allows one to study higher statisti-

cal moments: work fluctuations, which have been a significant focus in quantum statistical

mechanics (see, e.g., [71–74] for a selection of the large body of available literature on this

topic). To define this work distribution, we will consider one of the most prominent ap-

proaches for estimating work in an out-of-equilibrium process, the so-called two-point mea-

surement (TPM) scenario [75], which we shall describe now following the presentation in

Ref. [58].

I.2.C.1 The Two-Point Measurement Scheme

The situation considered in the TPM scenario is that of a quantum system with initial

Hamiltonian H (0)
S =

∑
nE

(0)
n |E(0)

n 〉〈E(0)
n | that is initially at thermal equilibrium with re-

spect to its environment at ambient temperature T . In the beginning, the system is there-

fore described by a thermal state τ (0)
S = exp(−βH (0)

S )/Z (0) with partition function Z (0) =

Tr
(
exp(−βH (0)

S )
)
. At time t = t0, the system is driven out of equilibrium by a process Λ

resulting in a time-dependent system Hamiltonian HS(λt), where λt is an externally con-

trolled parameter such that HS(λt0) = H (0)
S . At time t = tf , the process results in a final

Hamiltonian

HS(λtf ) = H (f)
S =

∑

n

E(f)
n |E(f)

n 〉〈E(f)
n | , (I.7)

and it is assumed that λt = λtf for all t ≥ tf , i.e., the process concludes at t = tf . The

time evolution of the system can be described by a unitary UΛ = T+ exp
(
−i
∫ tf
t0
HS(λt)

)
dt,

where T+ denotes time-ordering, which leaves the system in the final state

ρ(f)
S = UΛτ

(0)
S U †Λ. (I.8)

Within this setting, the goal is then to estimate the work (distribution) of this out-of-equilibrium

process. To this end, two projective measurements with respect to the eigenbases {|E(0)
n 〉}n

and {|E(f)
m 〉}m of the initial and final system Hamiltonian, respectively, are carried out, one

directly before and one directly after the dynamics represented by UΛ [69, 75], as illustrated

in Fig. I.1.
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τS

∣ψ ⟩
P

∣ψ ⟩
P

U0
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∣E(0)n ⟩ UΛ

Uf

m

∣E(f)m ⟩

Figure I.1: Work estimation in the TPM scheme. To estimate the work done on or extracted

from a system during a process Λ represented by a unitary UΛ, two measurements are car-

ried out before and after the process occurs, respectively. The outcomes of these two ideal

measurements, labelled "n" and "m", allow one to conclude that the system is left in the states

|E(0)
n 〉 and |E(f)

m 〉, respectively. Both of these ideal measurements can be modelled as a uni-

tary interaction of the system of interest with (two copies of) a pointer system P initially

prepared in a pure state |ψ 〉P . As discussed in Ref. [58], assuming that the pointers are ini-

tially not in pure states leads to non-ideal measurements, where the post-measurement system

states are no longer pure, resulting in corrections to the estimated work.

The TPM scheme comprises two projective measurements with respect to the eigen-

bases of the Hamiltonians H (0)
S and H (f)

S before and after the process Λ, respectively. Here,

a crucial assumption — which we will return to later — is that the measurements that are

performed are ideal [50], in particular, that the post-measurement states of the system are

pure states. In any given run of such an estimation procedure, two outcomes labelled by

"n" and "m" are obtained in these measurements, and one thus concludes that, directly

after each measurement, the system is left in the eigenstates |E(0)
n 〉 and |E(f)

m 〉, respec-

tively. The probability p(0)
n for obtaining the first outcome n only depends on the initial

state, p(0)
n = 〈E(0)

n | τ (0)
S |E(0)

n 〉 = exp(−βE(0)
n )/Z (0), while the probability for a transition be-

tween the (pure) energy eigenstates during the process is pn→m = | 〈E(f)
m |UΛ |E(0)

n 〉 |2. The

joint probability for obtaining the outcomes n and m in the first and second measurement,

respectively, is thus given by

p(n,m) = p(0)
n pn→m =

exp(−βE(0)
n )

Z (0)
| 〈E(f)

m |UΛ |E(0)
n 〉 |2. (I.9)

To each such transition, one may assign an unambiguous work value Wn→m = E(f)
m − E(0)

n ,

and we can then define the work distribution P (W ) via

P (W ) =
∑

m,n

p(n,m) δ (Wn→m −W ) . (I.10)

The average work performed during the protocol can then be obtained by integration, that

is,

〈W 〉 =

∫
P (W )W dW =

∑

m,n

p(n,m)
(
E(f)
m − E(0)

n

)
. (I.11)

One may easily check that the average work defined in this way matches the average energy

change of the system, i.e.,

〈W 〉 = Tr(H (f)
S ρ(f)

S )− Tr(H (0)
S τ (0)

S ) = ∆E. (I.12)
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In this way, an estimate of 〈W 〉 can be obtained by performing pairs of ideal measure-

ments and collecting the corresponding outcome statistics. However, the latter also allow

one to evaluate higher statistical moments of the work distribution. For instance, one may

consider the mean squared deviation of the work values from the average and define the

quantity

(
∆W

)2
=

∫
P (W )

(
W − 〈W 〉

)2
dW =

∑

m,n

p(n,m)
(
Wn→m − 〈W 〉

)2
, (I.13)

which, following the terminology used in Ref. [56], we refer to as the work fluctuations for

simplicity. However, we note that work fluctuations are often associated with a different

quantity in quantum statistical mechanics, in particular, in the context of the celebrated

fluctuation relations of Jarzynski [76] and Crooks [77], see, e.g., [69, 78] for an overview.

I.2.C.2 The Jarzynski Relation

Let us now briefly focus on the Jarzynski fluctuation relation, which follows as a corollary

from the more general theorem by Crooks. For Jarzynski’s relation, the quantity of interest

is the average of the exponentiated work value. That is, it can be shown in the context of

the TPM scheme that there is an exact relation between the average of exp(−βW ) and the

exponentiated equilibrium free-energy difference exp(−β∆F̃ ), i.e.,

〈e−βW 〉 = e−β∆F̃ . (I.14)

Here, ∆F̃ is given by

∆F̃ := F (τ (f)
S )− F (τ (0)

S ) = T ln
(Z (0)

Z (f)

)
, (I.15)

where τ (f)
S = exp(−βH (f)

S )/Z (f) is the thermal state of the system with respect to the final

Hamiltonian H (f)
S , with the partition function Z (f) = Tr

[
exp(−βH (f)

S )
]
. What is particularly

noteworthy in the relation in Eq. (I.14) is the fact that, while the left-hand side represents

(a statistical average derived from work values in) an out-of-equilibrium process, the right-

hand side is determined solely by the equilibrium quantity ∆F̃ , and we have used the tilde

here to signify the discrepancy with respect to the non-equilibrium free-energy difference

∆F = F (ρ(f)
S )− F (τ (0)

S ). In particular, we note that, since the system dynamics we consider

here is unitary, such that S(ρ(f)
S ) = S(τ (0)

S ), and since 〈W 〉 = ∆E from Eq. (I.12), we also

have 〈W 〉 = ∆F , whereas a straightforward application of Jensen’s inequality 〈eX 〉 ≥ e〈X〉

for the convex function eX leads to the second-law-like inequality

〈W 〉 ≥ ∆F̃ . (I.16)

The notion of work as a random variable that is to be estimated thus brings about some

interesting observations and generally follows the idea that ‘work is not an observable’, as
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argued by Talkner, Lutz, and Hänggi in Ref. [75]. In particular, the problem of work esti-

mation leads to a number of fundamental questions regarding the specifics of the estima-

tion process and the nature of the measurements necessary to do so (see, e.g., [71–74]), as

well as regarding the control over the system, e.g., via feedback, and its role in fluctua-

tion relations [79]. In addition, the possibilities for more general approaches than the TPM

scheme have been investigated, e.g., by Perarnau-Llobet et al. in Ref. [80] and by Lostaglio

in Ref. [81]. For details on many of these aspects, we refer the interested reader to a series

of book chapters [82–88] on this subject.

An aspect of this estimation problem of particular interest to this thesis is the ideal char-

acter of the measurements in question. As we explain in detail in Sec. II.6, where Ref. [50]

is presented, ideal measurements require pure input states for the pointer systems to which

the measured system is coupled. However, preparing such pure states is only possible if

infinite time, infinite energy, or infinitely complex interactions are available, a point that is

often attributed to Nernst’s unattainability principle [61, 62], but whose precise formulation

— in particular, with regards to the notion of complexity — is still a subject of ongoing de-

bate [89]. In the presence of pointer states at inevitable nonzero temperatures, the resulting

measurements are non-ideal, which leads to mixed conditional post-measurement states for

the system. The effects of such non-ideal measurements on the estimation of work, and on

the formulation (as well as, on the ability to satisfy) the relations by Jarzynski and Crooks,

is discussed in detail in another publication [58], that we present in full in Sec. II.7.

Finally, let us briefly draw some more attention to Ref. [90], where the point is made

that, although work may not be representable as an observable on the system S itself, it

is indeed possible to define work via an external observable. An astute observation made

by Beyer, Luoma, and Strunz in Ref. [90] in this context is that the estimation of work in

the TPM scheme requires knowledge of the system Hamiltonian, before and after the in-

teraction, whereas in a classical setting, work may be estimated via an externally applied

force. The authors of [90] therefore propose a scheme based on a collision model by which

work is defined as an external observable also in the quantum regime. While this approach

does not require knowledge of the particular system Hamiltonian, it makes very specific

assumptions about the ability to control the external systems with which the driven system

interacts, in particular, assuming the ability to precisely prepare an ensemble of pure states

and to measure these with respect to carefully chosen measurement bases (depending on

the particular ensemble state). A particular insight of Ref. [58] that we wish to emphasize

in this context is that the precision of the work estimate ultimately depends on the amount

of resources and control one is able, or willing, to invest into the estimation procedure. We

thus come to the conclusion that every definition of work in the quantum regime comes

with advantages and drawbacks, and is tailored to a set of specific assumptions about the

control one is able to enact over the system of study and its interactions with the environ-

ment. Moreover, it appears that definitions of work must be chosen in accordance with the
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particular task that one has in mind, e.g., for a heat engine [91]. This now leads us from

general considerations of heat and work to particular tasks in quantum thermodynamics,

specifically, to the extraction and storage of work, and the role that the control over the

respective quantum systems plays in these procedures.

I.3 Extraction and Storage of Work using Quantum Systems

I.3.A Passivity and Ergotropy

Although different definitions of work are available in general, in particular when it comes

to driving a system out of thermal equilibrium, the situation appears to be more clear-cut

for the problem of work extraction. There, the main questions is: How much work can be

extracted from a given quantum system? Here, it is understood that by ‘quantum system’

we mean a particular quantum state ρ in a fixed Hilbert space and a corresponding fixed

Hamiltonian H . In order to make the question more precise, however, we need to specify

the particular quantifier for work that we consider, which entails a restriction to certain

processes by which this work is to be extracted, as we shall discuss.

If we wish to talk about extractable work as a property of the system specified by ρ

and H , then our quantifier for extractable work should not depend on the specifics of any

external devices that may be used to extract work. Suitable candidates for such quantifiers

would hence be, for instance, the achievable differences in average energy, ∆E, or free

energy ∆F . However, we also have to restrict the transformations that we consider for

such a task.

First, it is clear that we have to demand that the work-extraction process modifies the

system state, i.e., ρ is mapped to another state ρ̃, but returns the system Hamiltonian to its

original form H when the process is complete. Otherwise, we could (more or less) arbi-

trarily change the average energy of the system simply by changing the energy gaps of the

Hamiltonian. Second, it is reasonable to restrict to operations that can be represented as

unitary operations of the system’s density matrix only. If that was not the case, we could

naively consider, e.g., a global unitary transformation on the system and some appara-

tus not initially correlated to the system. By maximizing the achievable work extraction

from the system over all choices of apparatuses, we would obtain an expression for the

extractable work that depends only on the system itself, as desired. At the same time,

however, this expression would trivially be just the average energy of the system, since we

could always consider the apparatus to be the same type of quantum system (same dimen-

sion and Hamiltonian) but initially in the corresponding ground state. A simple swap of

the two systems would then lower the system average and free energies by ∆E = E(ρ)

and ∆F = F (ρ), respectively, even while conserving the overall energy. While mathemati-

cally sound, such a definition of extractable work based on global (even energy-conserving)

operations would hence effectively lead to equating work and heat.
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The paradigmatic scenario [92] for quantifying the work extractable from a quantum

system instead considers the case where the transformations that extract work from the

system are realized by cyclic Hamiltonian dynamics. That is, the system’s time evolution

is governed by a time-dependent Hamiltonian H(t) with cycles of duration τ , at the end of

which the system is returned to its initial Hamiltonian, H(nτ) = H(0) for any n ∈ N. Up

to perturbations due to the interactions with the environment, this results in (local) unitary

dynamics,

ρ 7−→ ρ̃ = UρU †, and H 7−→ H, (I.17)

described by unitary transformations U with U †U = UU † = 1 on the system. The uni-

tary orbits of the input states thus determine the fundamental limits of operation of cyclic

machines. Unitary work extraction has therefore been a focus of attention in quantum ther-

modynamics, see, e.g., [93–98]. In this scenario, we have ∆E = ∆F , and we can hence

associate the extractable work with either quantity, and define the ergotropy

E(ρ,H) := max
U

Tr
(
H[ρ− UρU †]

)
, (I.18)

i.e., the maximal energy difference achievable within the unitary orbit of ρ. From this defi-

nition of extractable work, it follows that work extraction is only possible for states whose

average energy can be lowered by unitary transformation, whereas all states for which this

is not possible are called passive. The latter can be characterized in a rather simple way:

all passive states ρpass are diagonal in the eigenbasis {| n 〉} of the Hamiltonian H , with

H | n 〉 = En | n 〉 (for simplicity we assume a discrete spectrum here), and the magnitudes

of their diagonal entries are decreasing (not necessarily strictly) with increasing energy. In

other words, any passive state ρpass can be written as

ρpass =
∑

n

pn | n 〉〈 n | , (I.19)

with 0 ≤ pn ≤ 1 and
∑

n pn = 1, as usually, but additionally satisfying the constraints

pn ≤ pm when En ≥ Em. (I.20)

With this result at hand, the ergotropy can easily be rewritten as

E(ρ,H) := max
U

Tr
(
H[ρ− UρU †]

)
= Tr

(
H[ρ− ρpass]

)
, (I.21)

where ρpass is the unique (up to unitaries in degenerate subspaces of H) passive state reach-

able from ρ.

The elegance and simplicity of this approach to work extraction notwithstanding, one

may be led to ask how realistically achievable this figure of merit is in the light of imperfect

control over complex quantum systems with (possibly infinitely) many dimensions. For in-

stance, one may wonder how easily reachable the passive state is in practice for continuous-

variable systems where full information about the initial state may not be available, or, con-

versely, which states can be reached by practically implementable transformations. As a
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first step towards understanding such restrictions arising from limited control, Ref. [55],

which is presented in detail in Sec. II.3, introduced the notion of Gaussian passivity, i.e., the

class of continuous-variable states whose average energy cannot be reduced by Gaussian

unitary transformations, which are typically considered as being practically easily imple-

mentable, and provided a full classification of these states via their first and second statisti-

cal moments.

As we shall see next, work extraction is not the only thermodynamically relevant task

where such considerations regarding the practically realizable level of control over quan-

tum systems come into play, and we thus turn to the problem of storing work in quantum

systems.

I.3.B Quantum-Optical Systems as Quantum Batteries

As we have discussed, quantum thermodynamics has established a variety of different sce-

narios for the quantification of work and for modelling the associated state transformations.

In this thesis, we have previously concluded that quantifiers for work must take into ac-

count the context of the task for which this work is to be used, and the task that we want to

focus on now is that of supplying work to a particular quantum system. Within the broad

spectrum of available scenarios for delivering such a work input, two distinct paradigms

can be identified as the conceptual polar opposites (see, e.g., Refs. [46, 47, 89]): work can be

supplied to a target system

(i) via a heat flow generated by a temperature gradient between two thermal baths, or

(ii) via a direct supply from a coherent work source.

Scenario (i) can be understood as the operation of a heat engine [99–104], where the heat

flow supplies work incoherently to a working substance and the dynamics are globally

energy-conserving. On the one hand, this paradigm is appealing from a thermodynamic

point of view, since the system is overall closed and external control can be minimal in

the sense that an external agent operating the machine is only needed to switch on (and off)

interactions between the target and the heat baths. On the other hand, only a restricted class

of state transformations is achievable within this paradigm [89] and practical laboratory

situations in which quantum technologies are employed are not typically operated using

heat engines.

An all-encompassing understanding of possible state transformations and their resource

costs must therefore include coherent work sources as in (ii). Although the specific realiza-

tions of these work sources are often not included explicitly in modelling state transforma-

tions, doing exactly this will ultimately be necessary to truly obtain fine-grained descrip-

tions that will lead to a better understanding of quantum systems beyond thermal equilib-

rium. Such descriptions can be envisioned to provide insights, e.g., regarding the effects of

finite-time transformations, finite-size reservoirs, and fluctuations of relevant quantifiers.
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A starting point for such a more general approach lies in modelling the work sources —

commonly dubbed quantum batteries [94, 105] — on their own, i.e., independently of the

systems that they eventually supply work to. In other words, quantum batteries are con-

sidered as quantum systems in which work can be temporarily deposited and from which

it can subsequently be extracted. This approach has recently received a lot of attention,

with main foci on the charging speed or power [106, 107], including different models for

interaction between batteries and charging systems [108–115], the stability of the charged

battery [116, 117], charging assisted by strong interactions and thermalization [118], and

methods for describing fluctuations of the stored work [119–123].

Here, we focus on the approach of Ref. [56], which is presented in detail in Sec. II.4.

There, battery charging is realized via cyclic Hamiltonian processes, mirroring the approach

to work extraction discussed in Sec. I.3.A. In this case, the system Hamiltonian returns to

its original form at the end of each cycle and the battery-system state, initially assumed to

be thermal τ(β) as we have reasoned above, can be modelled to lie within the unitary orbit

of the initial state [94]. The work that is transferred to the system in this way is thus just the

difference in average energy, such that the transformation that is considered is

τ 7−→ ρ = Uτ(β)U † with 〈W 〉 = ∆E = Tr
(
H[Uτ(β)U † − τ ]

)
. (I.22)

This has the advantage that it allows us to consider the charging process independently

of the specifics of other potentially involved auxiliary systems (e.g., charger systems as

in [109, 112], or external classical power sources). We can thus focus on the properties of the

charging process and of the charged battery, and study fundamental bounds on the chosen

figures of merit. Here, we centre our attention on two particular quantities: the charging

precision, quantified by the variance of the final battery charge

V (ρ) = Tr
[
H2 ρ

]
−
(
Tr
[
H ρ

])2
, (I.23)

and the work fluctuations arising during the charging process

(∆W )2 =
∑

m,n

pm→n
(
En − Em −∆E

)2
, (I.24)

whereH | n 〉 = En | n 〉, pm→n = pm | 〈 n |U |m 〉 |2 is probability for a transition from energy

level m to n, and pm = |m 〉 τ |m 〉 is the probability to find the initial state in the energy

eigenstate |m 〉. While the charging precision captures a property of the final state, and the

work stored in it, the fluctuations capture a property of the process that leads to this final

state, and although it would of course be desirable to minimize both V (ρ) and (∆W )2 for

any given work input ∆E, this is not possible in general [56] for arbitrary (in particular,

thermal) initial states. Moreover, the optimal protocols for minimizing either one of the

two quantities can generally be complicated, in particular for continuous-variable systems.

However, as shown in Ref. [56], already simple Gaussian battery-charging protocols can

provide sub-linear scaling of both the variance and work fluctuations with the input energy

∆E, even if neither can come close to the respective optimal (non-Gaussian) protocols.
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Techniques from Gaussian quantum optics thus provide a useful toolbox, both from a

theoretical and from a practical point of view, for quantum thermodynamical tasks, includ-

ing work extraction and storage, showcasing the role of incomplete control (represented

by restrictions to the available or realizable operations) and incomplete information (repre-

sented by thermal initial states). Moreover, as we will see next, thermodynamic consider-

ations not only influence the extraction and storage of the thermodynamic resource work,

but also have an impact on its conversion into information-theoretic resources: correlations.

I.4 Conversion between Work and Correlations

I.4.A Entanglement and Work

The interplay between thermodynamics and quantum information is enriched by another

facet when considering quantum systems that consist of two or more subsystems. In such

a setting, a control restriction typically considered in the context of quantum information,

in particular, in entanglement theory (see, e.g., the reviews [124–129]), is that of local opera-

tions. That is, it is generally assumed that joint (global) operations on multiple subsystems

are technically more challenging to execute or outright practically impossible to perform if

the subsystems are sufficiently distant from each other. In quantum information this ele-

vates the genuine quantum correlations called entanglement to the level of a resource, since

entanglement cannot be created via local operations assisted by classical communication

(LOCC) [130]. Meanwhile, the entanglement of pure states |ψ 〉
AB

can be quantified via the

entropy of the subsystems, i.e., in terms of the entropy of entanglement given by

SE(|ψ 〉
AB

) = S(ρA) = S(ρB), (I.25)

where ρA/B = TrB/A(|ψ 〉〈ψ |
AB

) are the reduced states of subsystems A/B and S(ρ) =

−Tr
(
ρ ln ρ

)
is the von Neumann entropy. Thermodynamically, this implies that any work

invested in globally preparing an entangled pure state manifests locally as heat, meaning

that work cannot be extracted locally from such an entangled state. For instance, consider

the two-mode squeezed state

|ψTMS 〉 = UTMS(r) | 0 〉 =
1

cosh(r)

∞∑

n=0

tanhn(r) | n 〉
A
| n 〉

B
. (I.26)

of two harmonic oscillators labelled A and B with annihilation and creation operators a

and a†, and b and b†, respectively. The state is obtained by applying the unitary UTMS(r) =

er(a
†b†−ab) to the vacuum state | 0 〉, see, e.g., [131, Sec. 3]. The reduced states of both modes

are thermal states with respect to the Hamiltonians HA = ~ωA a
†a and HB = ~ωB b

†b, re-

spectively, and their inverse temperatures are given by βA/B = − 1
~ωA/B

ln
(
tanh2(r)

)
. Con-

sequently, their temperatures TA/B, and thus the entropy of the subsystems and the entan-

glement of |ψTMS 〉 are monotonically increasing functions of the squeezing parameter |r|.
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At the same time, also the average energy 〈HA + HB 〉 is unitarily increased. Consequently,

the work input required for applying UTMS(r) can here be directly related to the creation of

entanglement between the subsystems.

In this example, we can thus make two observations, first, the presence of correlations

in this (globally pure) system implies that work can be extracted globally, but since the

marginals are thermal, no work is extractable locally. This observation has been made on

a much broader basis in Ref. [95], where it was concluded that, indeed, all correlations in

locally thermal systems imply extractable work. Second, we note that the converse is also

true, all correlations that are to be established in initially locally thermal systems are asso-

ciated to a work cost. In this sense, the resources of quantum thermodynamics, i.e., work,

and of quantum information, i.e., correlations and entanglement, can be converted into each

other. However, the specifics of this conversion depend on the type of employed protocol

and the initial temperatures of the subsystems. In particular, when attempting to create

correlations entirely via cyclic Hamiltonian dynamics, i.e., within the unitary orbit of the

initial state, potentially entangling unitaries have associated temperature thresholds above

which no entanglement can be created [132]. For example, for the Gaussian transformation

UTMS(r) above to create entanglement when applied to two modes of the same frequency

ωA = ωB = ω via a cyclic Hamiltonian process, the initial temperature of the modes may

not exceed twice the value of the temperature defined by β = − 1
~ω ln

(
tanh2(r)

)
[133]. In

contrast, there exist non-Gaussian unitary transformations which may create entanglement

at any initial temperature [53].

However, the creation of correlations between two initially thermal subsystems need not

be limited to cyclic Hamiltonian (unitary) dynamics. For instance, in scenarios where the

initial temperature exceeds the threshold temperature for unitary entanglement creation,

an option is to invest work into first lowering the system temperature, before creating cor-

relations unitarily. The naturally arising question in this context is then to identify the op-

timal conversion of work into entanglement, as quantified by a suitable operationally well-

defined entanglement measure such as the entanglement of formation [134, 135], which can

be defined via a convex-roof construction, i.e.,

EoF(ρAB) := inf
D(ρAB)

∑

i

piSE(|ψi 〉AB
), (I.27)

where the infimum is defined over all pure-state decompositions, that is, D(ρ) is the set of

all sets {(pi, |ψi 〉AB
)}i for which ρAB =

∑
i pi |ψi 〉〈ψi |AB

, such that
∑

i pi = 1 and 0 ≤ pi ≤ 1.

The problem of optimizing EoF(ρAB) for given work input was considered in Ref. [53],

which we will discuss in more detail in Sec. II.1. However, even for locally thermal bi-

partite systems, answering this question has so far been limited to pairs of subsystems with

identical Hamiltonians that consist of qubits [132], fermionic modes [53], or bosonic modes

when restricting to Gaussian operations [53]. The bottleneck for answering this question

more broadly lies in the computational intractability of calculating the relevant entangle-

ment measures (here, the entanglement of formation) in general situations.
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I.4.B Work Cost of Correlations

Nevertheless, it is possible to provide optimal protocols for converting work into correla-

tions as quantified by the mutual information, which is given by

I(ρAB) = S(ρA) + S(ρB) − S(ρAB). (I.28)

For pure states, the mutual information trivially reduces to the entropy of entanglement

above, but for mixed states a nonzero value of I(ρAB) may be due to classical or quan-

tum correlations. For the mutual information, the optimal protocols for converting work

to correlations when starting from two locally thermal identical subsystems at inverse tem-

perature β were derived in [53] and consist of two steps: In the first step, the temperature of

both subsystems is symmetrically lowered such that the subsystems both are left in thermal

states at the same lower temperature, i.e., the first step maps the initial state τA(β) ⊗ τB(β)

to a state τA(βI) ⊗ τB(βI) with βI ≥ β. The associated work cost is bounded from below by

the non-equilibrium free-energy difference ∆F . In the second step, it is assumed that the

subsystems are unitarily (i.e., via cyclic Hamiltonian dynamics) correlated such that both

subsystems stay locally thermal but end up at a higher local temperature compared to the

final state of the refrigeration step. In other words, the state τA(βI) ⊗ τB(βI) is mapped to

ρ̃AB = U τA(βI) ⊗ τB(βI)U
† such that TrB/A(ρ̃AB) = τA/B(β′) for β′ ≤ βI. For a given overall

work input W , the correlations established in this way are bounded by

I(ρAB) ≤ βW. (I.29)

Whether or not this bound can be attained, i.e., if one can satisfy I(ρAB) = βW , then

hinges on several details. First, equality can only be achieved if the cooling cost is indeed

given exactly by the free-energy difference, which in turn depends on the particular cool-

ing paradigm, see, e.g., [46, 47]. Second, there is a dependence on the work input itself,

i.e., in the regime where the work input is small enough so that the optimal refrigeration

step reaches a nonzero temperature, the protocol may operate in the linear regime where

I(ρAB) = βW , but for larger W , the cooling step is naturally restricted by reaching T = 0,

meaning an overall sublinear conversion of work into correlations.

Third, the second step of the optimal protocols operate based on the assumption of the

existence of so-called symmetrically thermalizing unitaries (STUs) [57, 136], i.e., unitary trans-

formationsU that map the input pair of thermal states τA(βI)⊗τB(βI) to a final state ρ̃AB such

that the marginals are both thermal at the same higher temperature, TrB/A(ρ̃AB) = τA/B(β′)

for all βI and all β′ ≤ βI, and for all Hamiltonians HA = HB. This question is discussed in

more detail in Ref. [57] which we present in Sec. II.5. In addition to the previously known

existence results for STUs for Hamiltonians with equally spaced energy levels [132, 137],

Ref. [57] provided a number of proof techniques based on majorisation theory that pro-

vided existence proofs for STUs in local dimensions d = 3 and d = 4, but for higher local

dimensions the question remains unsolved to date.
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When the Hamiltonians of the two subsystems are not identical, STUs do not exist in

general, but in that case STUs are also generally not the solutions to the problem of opti-

mizing the mutual information at fixed energy input [57]. Besides this local but asymmetric

situation, one may also wonder how interacting Hamiltonians influence the work cost of

creating correlations. We have investigated this problem in Ref. [54], which is presented in

full in Sec. II.2. As we show there, the presence of an interaction term in the Hamiltonian,

and the resulting correlations (and even entanglement) in the initial thermal states can lead

to a reduced work cost of newly created mutual information ∆I in the sense that ∆I > βW .

I.5 Preliminary Conclusion and Outlook

As we have seen, ideas from thermodynamics and information theory can be fruitfully com-

bined with techniques from quantum theory, especially quantum information and quantum

optics, to gain a better understanding of the fundamental limits of achievable transforma-

tions of quantum systems in the face of limited information and restricted control. In par-

ticular, we have taken a closer look at the main resources of quantum thermodynamics

and quantum information, work and correlations, respectively, and we have discussed the

premise for meaningful definitions of work, its estimation, extraction, storage, and conver-

sion to correlations. In all of these tasks, an initial lack of complete information about the

systems under inspection and the apparatuses to which they are coupled leads to initial

thermality. The latter leads to a loss in quality or performance in terms of the respective fig-

ures of merit for each task. But at the same time, this opens up an interesting field of study

for determining optimal strategies for each task. The selection of works [50, 53–58], only

briefly discussed so far but included in full in Part II, represent some of our contributions

to this field, but research in this direction is far from concluded.

Indeed, many open questions remain in the overlap of quantum thermodynamics and

quantum information. Even when limiting to the range of questions discussed here, one

is met with a variety of further open problems, including (but not limited to) optimal

battery-charging protocols for precision and fluctuations for systems (in particular, finite-

dimensional) with arbitrary Hamiltonians, potential trade-offs between precision, fluctua-

tions, and power in battery charging, as well as the influence of control restrictions (e.g.,

in terms of local versus global operations) on the latter. As far as non-ideal measurements

(e.g., for work estimation) are concerned, much is yet to be learned about the influence

on practical protocols such as the stabilization of open-system batteries (cf. [117]) or the

specifics of realizing unbiased measurements in macroscopic detectors. As far as the ques-

tion of the optimal conversion of work to correlations is concerned, an outstanding issue is

the conjectured existence of STUs for local dimensions larger than d = 4, and, the more gen-

eral (albeit significantly more complicated, if not to say almost unassailable) question of the

optimal conversion of work into entanglement for arbitrary dimensions. In the area beyond

the specific tasks discussed above, there is of course also a host of further open questions,
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foremost, the identification of a satisfactory characterization of complexity in the context

of Nernst’s unattainability principle [89], and the detailed study of ensuing trade-offs be-

tween the energy costs, time requirements and complexity of operations for (ground-state)

cooling, or even tasks that require additional structure such as the operation of autonomous

quantum clocks [49], to name but a few.
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We establish a rigorous connection between fundamental resource theories at the quantum scale.
Correlations and entanglement constitute indispensable resources for numerous quantum informa-
tion tasks. However, their establishment comes at the cost of energy, the resource of thermodynam-
ics, and is limited by the initial entropy. Here, the optimal conversion of energy into correlations
is investigated. Assuming the presence of a thermal bath, we establish general bounds for arbi-
trary systems and construct a protocol saturating them. The amount of correlations, quantified
by the mutual information, can increase at most linearly with the available energy, and we deter-
mine where the linear regime breaks down. We further consider the generation of genuine quantum
correlations, focusing on the fundamental constituents of our universe: fermions and bosons. For
fermionic modes, we find the optimal entangling protocol. For bosonic modes, we show that while
Gaussian operations can be outperformed in creating entanglement, their performance is optimal
for high energies.

I. INTRODUCTION

Correlations constitute fundamental resources for var-
ious tasks in quantum information processing [1]. In or-
der to create the paradigmatic resource —entanglement
—global operations are required. These operations come
at a price: They require access to all of the subsystems
of the target system and precise control over their in-
teractions. This motivates the formulation of quantum
information theory as a resource theory with respect to
the limitations imposed by local operations and classical
communication (LOCC) [2–5].

However, there is another price to be paid for corre-
lating quantum systems. As any amount of correlation
implies extractable work [6–10], it follows that energy
is required to establish correlations. The required en-
ergy depends on the inevitable initial entropy of the sys-
tem. This establishes a link to another resource theory
—(quantum) thermodynamics, where the purity of the
system, as well as the available free energy constitute
fundamental resources due to the restrictions of the first
and second laws of thermodynamics.

Recent interest in thermodynamics in the quantum do-
main (see, e.g., [11–14]) is, in part, fueled by this in-
teresting connection to (quantum) information and its
implications for the very foundations of thermodynamic
laws [15–17]. Combining the limitations of both theories
shows that the resources of one theory are of great sig-
nificance to the other as well. Examples range from an
inevitable energy cost of measurements [18], and the role
of entanglement (and other quantum effects) in thermal

∗ D. E. Bruschi, M. Perarnau-Llobet, and N. Friis have contributed
equally to this work.

machines [19–25], to scenarios [26] in which thermody-
namic resources play a role in the formation of entangle-
ment and other types of shared information.

This naturally leads us to ask two fundamental ques-
tions about the physical limitations of quantum infor-
mation processing: What is the maximal amount of cor-
relation and entanglement that can be generated for a
given energy cost? How does the inevitable mixedness
due to finite temperatures influence these costs, or, in
other words, what is the role of the purity as a resource?
For closed systems, these questions were addressed in
Ref. [26]. Here, we extend these results by (i) considering
the presence of an auxiliary thermal bath, (ii) deriving
fundamental bounds and optimal protocols for the cre-
ation of total correlations, and (iii) analyzing the minimal
energy cost for creating genuine quantum correlations,
i.e., entanglement, in fermionic and bosonic systems.

First, assuming unlimited control over the system and
an arbitrarily large thermal bath (see Fig. 1), we derive
the ultimate limitations for any protocol to generate cor-
relations as quantified by the mutual information. This
top–down approach provides absolute bounds which can-
not be outperformed, and we present a protocol for which
these bounds can be saturated.

To complement these results, we then present a bot-
tom–up approach for the generation of entanglement be-
tween fundamental physical systems—field modes with
fermionic or bosonic statistics. Taking into account lim-
itations such as superselection rules for fermions, and
using experimentally feasible and widely available tech-
niques for bosonic modes, we provide protocols for the
creation of entanglement. While we find the fermionic
protocols to be optimal, we show that the practical
bosonic protocols become optimal only in the limit of
large input energies. Surprisingly, we find that for both
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the total and genuine quantum correlations, operations
involving the bath may be restricted to simple thermal-
ization processes.

II. FRAMEWORK

Let us start by defining some of the basic notions of
quantum thermodynamics. The energy E of any quan-
tum system S is given by the expectation value of the cor-
responding Hamiltonian HS in the system state ρ, that
is, E(ρ) = Tr(HSρ). A crucial quantity, which we will
refer to throughout this work, is the free energy F , i.e.,

F (ρ) = E(ρ) − T S(ρ) , (1)

where S(ρ) = −Tr
(
ρ ln(ρ)

)
is the von Neumann entropy.

The free energy defines the amount of work that is ex-
tractable from a system when given access to a thermal
bath at temperature T . For thermal states τ(β) of the
form

τ(β) =
e−βHS

Z(β)
, (2)

the free energy takes on its minimal value F
(
τ(β)

)
=

−T ln(Z), where Z is the partition function, β = 1/T ,
and we work in units where ~ = kB = 1. For arbitrary
states, F (ρ) may be referred to as the nonequilibrium
free energy. In the following, we consider the initial state
of the system S to be thermal, ρS = τS(β).

We further assume that a heat bath B, that is, an ar-
bitrarily large ancillary system in thermal equilibrium, is
available. The total Hamiltonian is H = HS + HB , and
the initial state can be written as τSB(β) = τS(β)⊗ τB(β).
The Hilbert space HS = HS1

⊗ HS2
of S is divided into

two subsystems, S1 and S2 , which we assume to be non-
interacting, such that HS = HS1

+HS2
and, consequently,

τS(β) = τS1
(β)⊗τS2

(β). These initially uncorrelated sub-
systems are to be correlated via a global unitary opera-
tion USB on the total Hilbert space H = HS ⊗ HB. The
unitary USB is the most general operation available, as-
suming that S and B are isolated. Any such unitary can
be thought of as a single cycle of a quantum machine.
The associated energy cost W is defined as the average
overall energy change,

W = Tr
(
H
[
USBτSB(β)U†SB − τSB(β)

])
= ∆ES + ∆EB ,

(3)

and it corresponds to the total work that needs to be
performed to correlate S. Since USB leaves the total en-
tropy of τSB invariant, W can be identified with the to-
tal change in free energy, which is minimal for the initial
thermal state. Note that any initial state different from a
thermal state at the temperature of the bath would pro-
vide extractable work that could be used to create cor-
relations. To avoid this dependence on the initial state,
and to properly account for the work invested in the sys-
tem, we chose an initial thermal state at temperature T ,

FIG. 1. Illustration of the general setup: Two quantum
systems, S1 and S2, at thermal equilibrium with a bath at
temperature T are acted upon either by a unitary US on the
bipartite system or by a more general unitary USB that also
involves the bath. The application of these unitaries, which
correlate the system, requires a supply of external energy.
In this general setting, we determine the optimal amount of
correlations and entanglement that can be generated in the
system for any given amount of energy.

corresponding to the temperature of the heat bath. It fol-
lows that W ≥ 0, and hence any operation USB requires
some energy. The aim of this paper is to determine how
this energy may be used most efficiently to correlate the
systems S1 and S2 .

We distinguish two kinds of correlations: total correla-
tions, and genuine quantum correlations (entanglement).
We quantify the former by the mutual information

IS1S2
(ρS) = S(ρS1

) + S(ρS2
) − S(ρS) , (4)

which measures the amount of global information shared
among the systems S1 and S2, i.e., the information en-
coded within the state ρS that is not accessible through
its subsystems alone. Pure quantum states for which the
mutual information is nonzero are entangled, but this
is not necessarily the case for mixed states. To quantify
genuine quantum correlations between S1 and S2, we em-
ploy the entanglement of formation (see, e.g., Ref. [27]
for a review of available entanglement measures), which
can be defined as the minimal average mutual informa-
tion across all decompositions of the mixed quantum
state into pure state ensembles, i.e.,

EoF (ρS) :=
1

2
inf
D(ρS)

∑

i

pi IS1S2

(
|ψi〉〈ψi|

)
, (5)

where D(ρS) = {pi, |ψi〉 |
∑
i pi |ψi〉〈ψi| = ρS}. In a finite-

dimensional system, the entanglement of formation rep-
resents the number of maximally entangled states per
copy that are needed asymptotically to create the state
via LOCC.
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III. CORRELATING QUANTUM SYSTEMS:
ENERGY COST AND OPTIMAL PROTOCOLS

We now present our main results. We start with
the top–down approach, where we determine the ulti-
mate limitations of creating correlations, as quantified
by the mutual information. Using the facts that the ini-
tial thermal state is completely uncorrelated, S(τS) =
S(τS1

) + S(τS2
), and that the global unitary leaves the

overall entropy invariant, S(USBτSBU
†
SB) = S(τSB), we

combine Eqs. (1) and (3) to express the energy cost W
in terms of the free energy difference as

W = ∆FS + ∆FB + T ISB , (6)

obtaining a similar expression to those discussed, e.g., in
Refs. [6, 28–30] in related contexts. A detailed deriva-
tion of Eq. (6) can be found in Appendix B. In complete
analogy to (6), we may split ∆FS into the free energy
differences of its subsystems, and their correlation as

∆FS = ∆FS1
+ ∆FS2

+ T IS1S2
, (7)

for which a proof is also given in Appendix B. For any
thermal state τ , the free energy difference to another
(non-equilibrium) state ρ may be expressed through the
relative entropy S(ρ||τ) = −S(ρ) − Tr(ρ ln τ) as ∆F =
T S
(
ρ||τ(β)

)
. This, in turn, allows us to write W in the

form

βW = S(ρS1
||τS1

) + S(ρS2
||τS2

) + S(ρB ||τB)

+ IS1S2
+ ISB , (8)

where ρS1
, ρS2

, and ρB denote the final reduced states
for the subsystems, S1 and S2, and the bath B, respec-
tively. In other words, work can be invested to shift the
thermal marginals away from equilibrium or to create
correlations. Since all quantities on the right-hand side
of Eq. (8) are non-negative, it can be immediately in-
ferred that the following ultimate bound holds for the
amount of correlation that can be generated between
the subsystems for a given energy cost W and tempera-
ture T = 1/β:

IS1S2
≤ βW . (9)

Remarkably, it is possible to saturate this bound
using a simple set of operations: unitary operations on S
and interactions with the bath to thermalize the system.
These operations are enough to obtain W = ∆FS in (6)
in the limit of an arbitrarily large bath that is complex
enough to thermalize the system each time they come
in contact (see Ref. [31] for a proof, and Ref. [32] for a
description in terms of unitary operations). We are now
ready to present the protocol achieving W = T IS1S2

,
which can be divided into two steps (see Fig. 2).

FIG. 2. Illustration of the protocol: In the first step
the system is cooled down by a controlled interaction with
the bath, and the heat Q is transferred to the bath. The
associated work cost is WI. In the second step, the system is
isolated from the bath before it is correlated though a unitary
operation, which effectively heats up the subsystems. The
energy cost of the second step is WII.

(I) Cooling: First, the temperature of S is lowered
from T to TI ≤ T , reducing the global entropy of
the system. The (minimal) energy cost for this
thermalization process is WI = ∆FS, i.e.,

WI = F
(
τS(βI)

)
− F

(
τS(β)

)
, (10)

where βI = 1/TI.

(II) Correlating: In the second step, the system is
isolated from the bath and it is correlated via a
unitary operation Ucorr. Following Ref. [26], the
unitary is chosen such that S1 and S2 are locally
thermal at temperature TII = 1/βII ≥ TI, i.e.,

TrS1(S2)

(
UcorrτS(βI)U

†
corr

)
= τS2(S1)(βII) . (11)

This choice ensures that the systems are correlated
at minimal energy cost WII, see [26].

There is thus a tradeoff between the amount of
work WI, invested to cool down the system, which al-
lows one to potentially obtain larger correlations, and
the work WII, invested to actually correlate it. As we
show in detail in Appendix C, both contributions add up
to

W = WI + WII = T IS1S2
+ T S

(
τS(βII)||τS(β)

)
. (12)

Therefore, optimality is achieved when the local temper-
ature of the final state marginals is identical to the initial
temperature, TII = T , such that W = T IS1S2

.
However, it may occur that this condition would re-

quire more energy to be used in the first step than is
needed to reach the ground state. In such a case, the
excess energy can be put to better use further correlat-
ing the final state, raising the local temperatures of the
subsystems beyond TII = T . These considerations yield
a more precise bound (see Appendix C), given by

IS1S2
≤
{
βW if βW ≤ S

(
τS(β)

)
,

S(τS(βII)) if βW > S
(
τS(β)

)
,

(13)
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where βII is given by the implicit relation E
(
τS(βII)

)
=

W + F
(
τS(β)

)
. There are hence two distinct regimes.

When an energy smaller than TS
(
τS(β)

)
is supplied, the

correlations scale linearly with the work input. As more
energy is provided, additional work needs to be invested
to move the states further out of local equilibrium, lead-
ing to noticeably different behavior. For instance, for
two bosonic modes, the correlations scale logarithmically
with the work input for βW � S

(
τS(β)

)
, as we show in

Appendix D.
Finally, it is worth mentioning that our protocol is ex-

tendible to nonequilibrium initial states. One then needs
to first extract the work content of the state, which leaves
it in a thermal state at the temperature of the bath. Our
protocol can then be readily applied using the extracted
work in addition to any externally supplied energy to
correlate the system.

IV. ENERGY COST OF ENTANGLEMENT
GENERATION

Having provided general bounds on the energy cost
of correlating two arbitrary systems, we now turn to
the case of genuine quantum correlations, i.e., entangle-
ment. Here the situation is much more complex. Even
determining whether a given quantum state is separa-
ble or not is generally NP hard. Therefore, obtaining
a general solution for arbitrary systems is a daunting
task that seems intractable. We therefore complement
the previous top-down approach for general correlations
by pursuing a bottom-up strategy to investigate the en-
ergy cost for generating entanglement. We focus our
attention on two physically relevant cases, namely, sys-
tems of two fermionic or bosonic modes. For the low-
dimensional fermionic problem and the case of bosonic
Gaussian states, computing the entanglement of forma-
tion in Eq. (5) becomes feasible.

Besides making the problem more tractable, the very
interesting features of bosonic and fermionic systems fur-
ther motivate our choice. On one hand, modes of quan-
tum fields play a fundamental role in the description of
nature in the context of (relativistic) quantum theory.
Hence, they provide a more general framework for our
analysis than systems with a fixed number of particles,
which appear as secondary quantities, i.e., as excitations
of the modes in question. On the other hand, this ap-
proach allows us to analyze the role of fermionic and
bosonic particle statistics, and the corresponding finite
and infinite-dimensional Hilbert spaces for two modes.
In addition, the formulation in terms of individual mode
operators naturally lends itself to the Hamiltonian struc-
ture, giving a clear interpretation to the involved energy
costs.

In this section, we consider protocols along the same
lines as previously, i.e., first varying the temperature of
the systems (not necessarily symmetrically) and then cor-
relating them via unitary operations. This choice is well

justified because any other operation that would either
create correlations between the system and the bath or
significantly change the state of the bath would have a
higher energy cost, as can be seen from Eq. (6).

A. Fermionic systems

We now consider a finite-dimensional system, two
modes of (equal) frequency ω of an uncharged, nonin-
teracting fermionic field. On one hand, the simplicity of
this system allows us to determine the amount of entan-
glement that may be generated for any given amount of
energy. On the other hand, several conceptually interest-
ing features arise from the fermionic algebra, that is, the
mode operators b

1
, b†

1
, b

2
, and b†

2
satisfy the anticommuta-

tion relations {bm , b†n } = δmn and {bm , bn } = 0, where
m,n = 1, 2 . The Hamiltonian of the system is (up to a
constant) given by HS = HS1

+ HS2
= ω

(
b†
1
b
1

+ b†
2
b
2

)
.

To distinguish the fermionic and bosonic case, we de-
note the fermionic Fock states by double-lined kets, e.g.,
the vacuum state is written as ||0〉〉. The single-particle
states are obtained by the action of the creation opera-
tors, i.e., ||1m 〉〉 = b†m ||0〉〉. We define the two-particle
state via ||1S1

〉〉 ||1S2
〉〉 = b†

1
b†
2
||0〉〉, where we have omit-

ted the symbol for the antisymmetrized tensor prod-
uct on the left-hand side (see Refs. [33] or [34, pp. 37]
for more details on the notation used here and the
fermionic Fock space). The system we investigate here
obeys Fermi-Dirac statistics, and the partition function
is hence ZFD(β) =

(
1 + e−β

)
, and we specify temper-

atures in units of ω [recall, that (~ = kB = 1] from
now on. The average initial particle numbers are given

by NS1(S2) = Tr
(
b†1(2)b1(2)τS

)
. The fermionic two-mode

thermal state may then be expressed as

τS =
e−β

Z2
FD

(
eβ ||0〉〉〈〈0||+ ||1S1

〉〉〈〈1S1
||+ ||1S2

〉〉〈〈1S2
||

+ e−β ||1S1
〉〉||1S2

〉〉〈〈1S2
||〈〈1S1

||
)
. (14)

With these preliminaries at hand, we consider proto-
cols along the lines of that presented in Section III to cre-
ate entanglement. In the first step of such a procedure,
using the interaction with the bath, the temperature of
the two modes is lowered as before, which manifests in al-
tered particle numbers N I

S1
and N I

S2
. The energy cost WI

for this step is given by the free energy difference to the
transformed state.

In the second step of the protocol, unitaries on the
two-mode space S are applied to correlate the system.
In the case of fermionic modes, these operations are fur-
ther restricted by superselection rules. Since the state
of any single fermion acquires a phase of π upon a ro-
tation around 2π, rotational symmetry prohibits coher-
ent superpositions of even and odd numbers of fermions.
Moreover, the superselection rules modify the definition
of the entanglement of formation of Eq. (5) in the sense
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that the minimization is carried out only over pure state
ensembles that respect superselection [35]. We hence
take as a measure of entanglement the minimum num-
ber, per copy, of maximally entangled states of the two
fermionic modes, which are needed to assemble a given
two-mode state. As is shown in Appendix E, this well-
defined measure of entanglement can be expressed by the
energy cost WII of the correlating step as

EoF = ln(2)

√
WII

ω

√
2
eβI − 1

eβI + 1
− WII

ω
. (15)

Similar to the previous section, we determine the optimal
splitting of W into WI and WII, and we express it in terms
of the optimal final temperature TII. The results of this
numerical optimization are presented in Fig. 3. Although
the protocol is very similar to that for the generation of
mutual information, optimality is not achieved for TII =
T , but rather when TII ≥ T , see Fig. 3 (b).

One can further improve upon these results by taking
advantage of the peculiar properties of fermionic entan-
glement, in particular the existence of mixed, maximally
entangled states [36]. These particularities may occur
because the subspaces of even and odd fermion numbers
decouple. Consequently, no unitaries may introduce cor-
relations between these subspaces. The optimally corre-
lating unitary Ucorr can therefore be decomposed into two
independent rotations. Furthermore, we find that alter-
ing the temperatures of the subsystems asymmetrically,
i.e., cooling one mode while heating the other, can be
beneficial. Allowing for such asymmetric temperatures,
we numerically optimize the fermionic entanglement of
formation generated at a fixed energy cost. The results
are discussed in detail in Appendix E.

B. Bosonic systems

Let us now investigate the optimal generation of en-
tanglement for a bosonic system. Analogously to the
fermionic case, we consider two modes of an uncharged,
noninteracting bosonic field. We assume that these
modes, again labeled S1 and S2, have the same fre-
quency ω. The corresponding annihilation and creation
operators a

1
, a†

1
, a

2
, and a†

2
satisfy the commutation

relations [am , a
†
n ] = δmn and [am , an ] = 0, where

m,n = 1, 2 . The system Hamiltonian may be writ-
ten in terms of these operators (up to a constant) as
HS = HS1

+ HS2
= ω

(
a†

1
a

1
+ a†

2
a

2

)
. The infinite-

dimensional Fock space of these two modes is spanned by
the vacuum state |0〉, which is annihilated by a

1
and a

2
,

and the particle states, which are obtained by applying
the creation operators a†

1
and a†

2
to the vacuum. The

bosonic excitations obey Bose-Einstein statistics, where

the partition function is given by ZBE(β) =
(
1−e−β

)−1
.

Note that the temperatures are again given in units of ω
and we have set ~ = kB = 1.

(a)

(b)

FIG. 3. Fermionic entanglement cost: The solid curves
in Fig. 3 (a) show the amount of entanglement (of forma-
tion) that can maximally be generated in the even subspace
of two fermionic modes that are initially in a thermal state,
for a given energy cost W . The curves are plotted for initial
temperatures varying from T = 0 to T = 1 in steps of 0.1
(top to bottom) in units ~ω/kB. The horizontal axis shows
the relative energy cost, i.e., the fraction of W and the min-
imal energy cost Wmax =

[
2T ln

(
eβ + 1

)
− ω

]
to generate a

maximally entangled pure state. Fig. 3 (b) shows the corre-
sponding effective final temperature TII ≥ T of the marginals
after the protocol.

To handle this infinite-dimensional system, we will re-
strict our analysis of entanglement generation to Gaus-
sian states, which commonly feature in applications in
quantum information [37] and quantum computing [38],
to name but a few. The correlations of two-mode Gaus-
sian states can be completely described by a real, 4 × 4
covariance matrix σS. This matrix collects the expecta-
tion values of quadratic combinations of the mode opera-
tors—the second moments—and we may assume that the
expectation values of all linear combinations of mode op-
erators—the first moments—vanish. For a given state ρS,
the components of σS are (σS)mn = Tr

(
{Xm ,Xn } ρS

)
,

with the quadrature operators X(2n−1) = (an + a†n)/
√

2

and X(2n) = −i(an − a†n)/
√

2, and m,n = 1, 2. For the
initial thermal state at temperature T that we consider
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here, the covariance matrix is proportional to the iden-
tity operator, σS = ν(T )14, where the symplectic eigen-
value ν is given by ν(T ) = coth(β/2).

In the first step of the protocol to optimally generate
entanglement, the initial temperature is lowered from T
to TI < T , after which the state is represented by σI

S =
νI 14, where νI = ν(TI). The energy cost for this step is
given by

WI

ω
= νI − ν(T )− 2β−1

[
f
(
νI
)
− f

(
ν(T )

)]
, (16)

where the entropy of a two-mode thermal state rep-
resented by σ is expressed as S(σ) = 2f(ν) = (ν +
1) ln

(
ν+1
2

)
− (ν − 1) ln

(
ν−1
2

)
.

In the second step of the protocol, we restrict the en-
tangling unitaries to Gaussian operations, which may be
represented as linear transformations of the mode oper-
ators. Since the initial covariance matrix is proportional
to that of the vacuum, the final covariance matrix must
be proportional to that of a pure, two-mode Gaussian
state, which is locally equivalent to a two-mode squeezed
state. We may therefore conclude that the optimal Gaus-
sian entangling operations for this situation are two-mode
squeezing transformations. Moreover, throughout the
protocol, the state remains symmetric with respect to
the two subsystems, that is, their entropies are identical.
For such states, all entanglement measures depend on a
single parameter ν̃−, the smallest symplectic eigenvalue
of the partial transpose. In terms of ν̃−, the entangle-
ment of formation takes the form

EoF =

{
h(ν̃−) , if 0 ≤ ν̃− < 1 ,

0 , if ν̃− ≥ 1 ,
(17)

where h(x) = h+(x) ln
(
h+(x)

)
− h−(x) ln

(
h−(x)

)
, and

h±(x) = (x±1)2
4x . One may also relate ν̃− to the squeezing

parameter r of the thermal two-mode squeezed state after
step II via e−2r = ν̃−/νI, while the final state energy is
given by ω

(
νI cosh(2r) − 1

)
. With this, the energy cost

for step II can be expressed as

WII

ω
=

(νI)2

2ν̃−

[ ν̃−
νI
− 1
]2
. (18)

Conversely, Eq. (18) allows us to express ν̃−, and
hence EoF , in terms of νI and WII = W −WI. The re-
sults of the numerical optimization of the entanglement
of formation over νI are shown in Fig. 4. Note that in
contrast to the fermionic case, here we find TII < T .
Another interesting feature of the bosonic system is that
for nonzero initial temperatures, entanglement cannot be
generated for arbitrarily small amounts of supplied en-
ergy [39]. Instead, entanglement is only created when
the constraint (νI − 1)2 < 2WII/ω is satisfied.

Finally, a comment about the optimality of Gaus-
sian operations is in order. As we show in detail in
Appendix F, there are two energy regimes. In the

(a)

(b)

FIG. 4. Optimal bosonic entanglement: The curves in
Fig. 4 (a) show the optimal amount of entanglement (of for-
mation) that can be generated by Gaussian operations on two
bosonic modes, S1

and S2
, of frequency ω, which are initially

in a thermal state of temperature T . The horizontal axis
shows the supplied energy W in units of ω. Fig. 4 (b) shows
the local temperature TII of the modes after the protocol for
values of W for which entanglement can be generated. The
curves in both Fig. 4 (a) and (b) are plotted for initial tem-
peratures varying from T = 0 to T = 1 in steps of 0.1 (top to
bottom) in units ~ω/kB.

low-energy regime, Gaussian operations may be outper-
formed by non-Gaussian operations in generating entan-
glement. We provide a protocol which achieves this,
and allows leaving the separable states even for arbi-
trarily small amounts of supplied energy. In the high-
energy regime, on the other hand, Gaussian operations
are shown to be asymptotically optimal for the genera-
tion of entanglement. This can be understood in the fol-
lowing way. When enough energy is supplied, the ground
state is reached in the cooling phase. All remaining en-
ergy can then be optimally used for Gaussian entangling
operations. When large amounts of energy are invested,
the fraction of the energy that is suboptimally spent in
the cooling stage becomes negligible, vanishing in the
limit of an infinite energy supply.
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V. CONCLUSION

We have investigated the equivalence between free en-
ergy and the ability to create correlations in quantum sys-
tems. Any amount of correlation implies that extractable
work is present in the system. Conversely, the creation of
any amount of correlation comes at the price of investing
work. Following this premise, we have introduced proto-
cols that are optimal for the generation of correlations, as
well as genuine quantum correlations, at minimal energy
cost. For total correlations, as quantified by the mutual
information, we have presented a protocol that is optimal
for arbitrary bipartite systems.

For the case of genuine quantum correlations — entan-
glement, the paradigmatic quantum resource — we have
focused on two fermionic or two bosonic modes. For both
types of systems, we have derived optimal protocols for
the generation of entanglement as quantified by the well-
known entanglement of formation. In the case of bosons,
we have restricted the optimization to the set of Gaus-
sian operations for the sake of feasibility. To place this
choice in an appropriate context, we have also discussed
explicit protocols that make use of non-Gaussian oper-
ations, showing that they can decrease the energy cost
when the available energy is small. Nonetheless, our find-
ings further show that Gaussian operations become op-
timal in the limit of large available energies. A common
feature of all the mentioned protocols is their remark-
ably simple structure. They make use of the interaction
with a thermal bath to cool (or heat) the (sub)system,
which, interestingly, requires only elementary thermal-
ization processes, before introducing correlations.

Our results connect two important resource theories,
revealing the implicit thermodynamical cost and value
of quantum correlations. While we have focused our
efforts on bipartite quantum systems, the results con-
cerning correlations have the potential for a straightfor-
ward generalization to the multipartite case when consid-
ering correlations quantified by S(ρ) −∑i S(ρi) where
ρi = Trj 6=i(ρ). Such considerations are possible exten-
sions of our work, especially when connected to cases of
multipartite entanglement generation. Here, the focus on
bipartite entanglement has guaranteed the utility of the
created resources for quantum communication, whereas
future work concerning multipartite entanglement should
be approached with great care, as generic generation
of entanglement may be less useful than previously be-
lieved [40]. Other possible directions inspired by our work
include similar considerations for single-shot scenarios as,
e.g., in Refs. [15, 31, 41], which effectively means focus-
ing on different entropies in the mutual information, the
inclusion of catalytic systems [15], or even the interesting
connection with the thermodynamic properties of trans-
formations induced by nonuniform motion [42, 43].
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APPENDIX

A: Preliminaries

Before we present detailed proofs for the main results,
let us review some preliminary concepts. First, recall
that the free energy of a state ρ is given by

F (ρ) = E(ρ) − T S(ρ) = Tr
(
ρH
)

+ T Tr
(
ρ ln ρ

)
.

(A1)

For a thermal state, τ(β) = e−βH/Z, with the partition
function Z ∈ R, and β = 1/T , where we have set kB = 1,
the free energy reduces to

F
(
τ(β)

)
= −T lnZ . (A2)

Moving a thermal state away from equilibrium always
requires work, which is given by the free energy difference

∆F
(
τ(β)→ ρ

)
= F (ρ) − F (τ) (A3)

to the final state ρ. An elementary way to see
that ∆F ≥ 0 ∀ ρ for initial thermal states is via the rel-
ative entropy S(ρ||τ), defined as

S(ρ||τ) = −S(ρ) − Tr
(
ρ ln τ

)
. (A4)
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For thermal states τ(β) we may then write

T S
(
ρ||τ(β)

)
= −T S(ρ) − T Tr

(
ρ ln τ(β)

)

= −T S(ρ) + Tr(ρH) + T lnZ Tr(ρ)

= F (ρ) − F
(
τ(β)

)

= ∆F
(
τ(β)→ ρ

)
. (A5)

By virtue of Klein’s inequality (see, e.g., Ref. [44]), the
quantum relative entropy is non-negative, S(ρ||τ) ≥ 0,
and vanishes if and only if ρ = τ . Consequently, we can
conclude that ∆F

(
τ(β)→ ρ

)
≥ 0.

B: Energy cost of a general unitary

We now give a detailed proof of Eq. (6), where we
denote the transformed states of the system, the subsys-
tems, and the bath as ρS, ρS1

, ρS2
, and ρB, respectively.

Starting from Eq. (3), the energy differences are rewrit-
ten in terms of the changes in free energy and entropy
as

W = ∆ES + ∆EB

= ∆FS + ∆FB + T
[
S(ρS) + S(ρB)− S(τS)− S(τB)

]

= ∆FS + ∆FB + T
[
S(ρS) + S(ρB)− S(τSB)

]

= ∆FS + ∆FB + T
[
S(ρS) + S(ρB)− S(ρSB)

]

= ∆FS + ∆FB + T ISB , (B1)

where we have made use of the fact that the global
unitary leaves the overall entropy unchanged, S(ρSB) =
S(τSB). To prove the similar result of Eq. (7) for the par-
tition of the system S into its subsystems we first write

∆FS = ∆ES − T ∆SS

= ∆ES1
+ ∆ES2

− T
[
S(ρS)− S(τS)

]
. (B2)

The energy differences of the subsystems may then be
expressed as

∆ES1
= ∆FS1

+ T
[
S(ρS1

)− S(τS1
)
]
, (B3a)

∆ES2
= ∆FS2

+ T
[
S(ρS2

)− S(τS2
)
]
. (B3b)

Finally, noting that S(τS1
) + S(τS2

) = S(τS), one arrives
at

∆FS = ∆FS1
+ ∆FS2

+ T
[
S(ρS1

) + S(ρS2
)− S(ρS)

]

= ∆FS1
+ ∆FS2

+ T IS1S2
, (B4)

which concludes the proof.

C: Optimal protocol for generating mutual
information

Let us now turn our attention to the protocol for the
optimal generation of correlations. We prove here that
the ultimate bound W = T IS1S2

can be achieved, by
first proving Eq. (12). The (minimal) energy cost WI for
the first step, reducing the system temperature from T
to TI ≤ T , is given by

WI = ∆FS

(
τS(β)→ τS(βI)

)
= E

(
τS(βI)

)
− E

(
τS(β)

)

− T
[
S
(
τS(βI)

)
− S

(
τS(β)

)]
. (C1)

For the second step we use a unitary operation, which
leaves the system entropy invariant, while the subsystems
become locally thermal at temperature TII = 1/βII. The
average energy of the system after the transformation is
hence identical to that of a thermal state τS(βII). The
minimal energy cost WII is hence given by

WII = E
(
τS(βII)

)
− E

(
τS(βI)

)
. (C2)

The correlations of the final state, as measured by the
mutual information, are then

IS1S2
= S

(
τS1

(βII)
)

+ S
(
τS2

(βII)
)
− S

(
τS(βI)

)

= S
(
τS(βII)

)
− S

(
τS(βI)

)
. (C3)

Using Eq. (C3), the energy costs for both steps can be
combined to arrive at

W = WI + WII = E
(
τS(βII)

)
− E

(
τS(β)

)

− T
[
S
(
τS(βII)

)
− S

(
τS(β)

)
− IS1S2

]

= ∆FS

(
τS(β)→ τS(βII)

)
+ T IS1S2

= T
[
S
(
τS(βII)||τS(β)

)
+ IS1S2

]
. (C4)

Now, if W is split into the contributions WI and WII

such that βII = β, one obtains T IS1S2
= W , as desired.

Interestingly, this is not always achievable. Setting βII =
β may require WI to become larger than the energy that
is necessary to cool down to the ground state. This leads
to a surplus of energy for the correlation step. In such
a case, TII is larger than the initial temperature T . The
transition to this regime occurs when,

W = W̃ = W̃I + W̃II = T S
(
τS(β)

)
, (C5)

where W̃I = −F
(
τS(β)

)
corresponds to the energy nec-

essary to cool down to the ground state and W̃II =
E
(
τS(β)

)
is the work necessary to correlate the systems
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such that βII = β. After some rearranging, one obtains

IS1S2
≤
{
βW if βW ≤ S

(
τS(β)

)
,

S(τS(βII)) if βW > S
(
τS(β)

)
,

(C6)

where βII is given by the implicit relation

E
(
τS(βII)

)
= W + F

(
τS(β)

)
. (C7)

There are thus two fundamentally different regimes for
the generation of mutual information.

D: Generation of mutual information between two
bosonic modes

Let us examine more closely the scaling of the gen-
erated correlations with the input energy. Since the
amount of energy that may be used to correlate two
fermionic modes is finite, we will focus on the system
of two bosonic modes as described in Section IV B. Re-
call that the system Hamiltonian is given by HS =
HS1

+HS2
. Up to a constant, the subsystem Hamiltonians

may be expressed in terms of the Fock states |nS1(2)
〉 =

(1/
√
n!)(a†1(2))

n |0〉 as

HS1(2)
=

∞∑

n=0

nω |nS1(2)
〉〈nS1(2)

| , (D1)

and we use units where ~ = 1. Likewise, the initial ther-
mal state τS(β) = τS1

(β)⊗τS2
(β) can be expressed in this

way, i.e.,

τS1(2)
(β) =

∞∑

n=0

pn(β) |nS1(2)
〉〈nS1(2)

| , (D2)

where pn = (1 − e−β)e−nβ , with β = 1/T , and tem-
peratures in units of ω. The energy and entropy of the
thermal state evaluates to

E
(
τS(β)

)
= Tr

(
HSτS(β)

)
= ω

[
coth

(
β/2

)
− 1
]
, (D3)

S
(
τS(β)

)
= −Tr

(
τS ln(τS)

)
= 2f

(
coth

(
β/2

))
, (D4)

where f(x) is the entropic function

f(x) =
x+ 1

2
ln
(x+ 1

2

)
− x− 1

2
ln
(x− 1

2

)
. (D5)

As we have argued in Eq. (13), the optimal mutual infor-
mation that may be generated from such a thermal state
using energies W smaller than S

(
τS(β)

)
/β scales linearly

with W .

Let us now consider the regime where the supplied en-
ergy W is much larger than S

(
τS(β)

)
/β. After reaching

the ground state in the first step of the protocol, all of
the excess energy increases the correlations. The energy

of the final state is equal to the work invested into the
correlation step, i.e., E

(
τS(βII)

)
= WII. From Eq. (D3),

we hence find

coth
(βII

2

)
=

WII

ω
+ 1 . (D6)

From Eq. (C6) we infer that the mutual information is
given by IS1S2

= S(τS(βII)). Inserting into Eq. (D4) and

expanding f
(
(WII/ω) + 1

)
into a Taylor-Maclaurin series

for (ω/WII)� 1, we find

IS1S2
= 2 + 2 ln

(
1
2

WII

ω

)
+O

( ω
WII

)
, (D7)

where O(x) is a quantity such that O(x)/x remains finite
in the limit x → 0. We conclude that for large energy
supply, the optimally generated correlations increase only
logarithmically with increasing energy, in stark contrast
to the linear increase at small energies, see Fig. 4 (a).

E: Optimal protocol for fermionic entanglement of
formation

We now present a modification of our previous protocol
for the generation of entanglement between two fermionic
modes. To optimally convert the supplied energy into
fermionic entanglement of formation, the temperatures
of the two modes are allowed to change independently of
each other in the first step of the protocol. In particular,
this entails heating as well as cooling of the individual
modes, and the average particle numbers N I

S1
and N I

S2

may be different from each other. As before, the energy
cost WI for this step is given by the free energy difference
of the initial thermal and the transformed state.

For step II of the protocol, the two modes are corre-
lated using unitary operations on the system only. As
mentioned before, the superselection rules forbid coher-
ent superpositions between even and odd numbers of
fermions. In particular, the maximally entangled two-
mode pure states for the even parity subspace, ||φ± 〉〉 =
1√
2

(
||0〉〉 ± ||1S1

〉〉||1S2
〉〉
)
, and those for the odd parity

subspace, ||ψ± 〉〉 = 1√
2

(
||1S1
〉〉 ± ||1S2

〉〉
)
, may not be inter-

converted by parity conserving operations. These states
may hence be regarded as forming a maximally entan-
gled set [45]. Consequently, the optimally correlating
unitary Ucorr for two modes decomposes into a direct sum
of two SU(2) rotations. For each, only one real param-
eter, denoted by θeven and θodd, respectively, is relevant
for the amount of generated entanglement. We quan-
tify the entanglement by the superselected entanglement
of formation, i.e., the minimum number, per copy, of
the aforementioned maximally entangled states respect-
ing superselection rules, that are required to assemble a
given two-mode state.

However, note that the imposed superselection rules
also prevent local changes of basis for each fermionic
mode. The states ||φ± 〉〉 and ||ψ± 〉〉 could therefore be
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considered to be entangled only in a mathematical sense,
that is, the entanglement may not be directly used, for in-
stance, to violate a Bell inequality. Nonetheless, if the en-
tanglement is extracted by swapping it to a bosonic sys-
tem, it becomes useful in the conventional sense. Since a
swap using local unitaries cannot create entanglement,
its origin must lie in the original fermionic entanglement.
Keeping this argument in mind, a pure state decompo-
sition of the transformed state that requires the fewest
copies of the maximally entangled pure states ||φ± 〉〉
and ||ψ± 〉〉 may easily be found, yielding the entangle-
ment of formation

EoF = ln(2)
[
|1−N I

S1
−N I

S2
| sin(2θeven)

+ |N I
S1
−N I

S2
| sin(2θodd)

]
, (E1)

where 0 ≤ θeven, θodd ≤ π/4. Since the odd-subspace ro-
tation shifts excitations of equal frequency, θodd does not
contribute to the energy cost of the second step, which
is given by

WII

ω
= 2

(
1−N I

S1
−N I

S2

)
sin2(θeven) . (E2)

We may hence set θodd = π/4 at no additional expense
in energy. We note that this suggests a tradeoff between
creating entanglement in the even and odd subspace by
heating one mode, while the other is cooled. The en-
tanglement of formation becomes maximal when enough
energy is supplied to cool one mode, we assume here S1,
to the ground state, while θeven = π

4 . The minimum en-
ergy Wopt for which this is the case is obtained when the
reduced state of the second mode S2 is maximally mixed.
If less energy than Wopt is supplied, it is split between
cooling and heating the modes S1 and S2, respectively, in
step I, before correlating them in step II. The resulting
state is a mixed state that is entangled both in the even
and odd subspace. When W = Wopt, the weights of the
even and odd subspace entangled states are equal.

As more energy is provided, it may be used to shift
the entanglement to one of the subspaces, obtaining a
final state with higher purity. When W = Wmax, where
Wmax = Wopt + T ln(2) = 2T ln(eβ + 1) − ω, the final
overall state is pure, but the entropy of both subsystems
is maximal. The exact values of N I

S1
, N I

S2
, and θeven may

be determined by numerical optimization for fixed values
of W and T . In Fig. 5, the protocol is illustrated for vari-
ous temperatures, where the excess energy between Wopt

and Wmax is used to shift the entanglement towards the
even subspace.

Note that the single-mode marginals of the superse-
lected fermionic modes after step I of the protocol are
fully determined by the corresponding average particle
numbers. In principle, one may therefore consider the
first step to involve the preparation of more general, un-
correlated states, for which 1/2 < N I

S1(S2) ≤ 1. However,
we find that optimality is achieved for particles numbers
that are compatible with thermal marginals.

(a)

(b)

FIG. 5. Optimal fermionic entanglement: The solid
curves in Fig. 5 (a) show the amount of entanglement (of
formation) that can maximally be generated between two
fermionic modes, S1 and S2, that are initially in a thermal
state of temperature T , for a given energy cost W . The
horizontal axis shows the relative energy cost, i.e., the frac-
tion of W and the energy cost Wmax. Fig. 5 (b) shows the
average particle numbers N I

S1
(dashed lines) and N I

S2
(solid

lines) after the first step of the protocol, where we have as-
sumed N I

S2
≥ N I

S1
without loss of generality. The curves in

both Fig. 5 (a) and (b) are plotted for initial temperatures
varying from T = 0 to T = 1 in steps of 0.1 and for the
limit T → ∞ (bottom to top) in units ~ω/kB. The dashed
curves in Fig. 5 (a) show the corresponding curves of Fig. 3 (a)
for temperatures varying from T = 0 to T = 1 in steps of 0.1
(top to bottom) as a comparison.

F: Optimality of Gaussian operations

Finally, we investigate the optimality of Gaussian op-
erations for the generation of entanglement. As for the
mutual information, we identify two energy regimes with
qualitatively different behavior. In a certain low-energy
regime, we are able to show that Gaussian operations
are not optimal. To achieve this, we construct a protocol
using specific non-Gaussian unitaries, which outperforms
our previously established protocol for Gaussian opera-
tions. Nevertheless, in the high-energy regime, Gaussian
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operations perform better. Indeed, we show that the en-
tanglement generated by the Gaussian protocol scales op-
timally with the available energy in this case.

Low-energy regime

Instead of the previously established protocol based
on Gaussian operations, we now introduce a scheme to
generate entanglement using non-Gaussian operations in
the correlation step. That is, after cooling the system
to the temperature TI = 1/βI using the energy WI, we
perform a unitary transformation that rotates in the sub-
space of the two-mode Fock space that is spanned by
|0S1
〉 |0S1

〉 and |nS1
〉 |nS2

〉, where we recall the notation of
Appendix D. One may think of this operation as gener-
ating Bell states in the four-dimensional subspace. We
conveniently parametrize this rotation by a single, real
parameter α, where 0 ≤ α ≤ π/4, such that

|0S1
〉|0S2

〉 7→ cos(α) |0S1
〉|0S2

〉+ sin(α) |nS1
〉|nS2

〉 , (F1)

|nS1〉|nS2〉 7→ cos(α) |nS1〉|nS2〉 − sin(α) |0S1〉|0S2〉 . (F2)

The energy cost WII of this rotation is given by

WII = 2nω
(
p20 − p2n

)
sin2(α) , (F3)

where we now have pn = (1−e−βI)e−nβI , with βI = 1/TI,
and temperatures in units of ω. Here, the entanglement
of formation of the transformed state can be quanti-
fied by way of the concurrence[46] of the (unnormalized)
state of the subspace spanned by |0S1

〉 |0S1
〉, |0S1

〉 |nS1
〉,

|nS1
〉 |0S2

〉, and |nS1
〉 |nS2

〉, see Refs. [47, 48]. For the con-
currence C, we obtain the expression

C =
(
p20 − p2n

)
sin(2α) − 2p0pn (F4)

=
√

1
n
WII

ω

√
2
(
p20 − p2n

)
− 1

n
WII

ω − 2p0pn .

Whenever C > 0, entanglement is present, which trans-
lates to the condition

WII

ω

(
p20 − p2n −

1

2n

WII

ω

)
> 2np20p

2
n . (F5)

It can easily be seen that this condition can always be
satisfied by choosing n to be large enough. Therefore,
some entanglement can be generated at an arbitrarily
low energy cost given two infinite-dimensional systems.
Recall that Gaussian operations require at least the en-
ergy ω

2 (νI− 1)2 to leave the separable set. Consequently,
Gaussian operations cannot be optimal for entanglement
generation in all regimes, although they are optimal for
the generation of total correlations. Specifically, the uni-
tary of Eq. (11) can be implemented with Gaussian op-
erations. On the other hand, the amount of entangle-
ment generated by the non-Gaussian protocol we have
presented here is bounded. For fixed n, the maximal

amount of energy useful for this protocol is n
(
p20 − p2n

)
,

and the corresponding maximal concurrence is given by

Cmax =
(
p0 − pn

)2
. (F6)

In contrast, the entanglement that may be generated by
Gaussian operations is unbounded. Our considerations
are illustrated in Fig. 6.

FIG. 6. Comparison of Gaussian and non-Gaussian
operations: The plot shows the amount of entanglement
(of formation) that can maximally be generated between two
bosonic modes in step II of the protocol. Both modes are
assumed to have been cooled to temperature TI in the first
step. Using the energy WII, the solid curves show the optimal
entanglement generated by Gaussian operations, while the
dashed curves show the amount of entanglement generated
by the non-Gaussian protocol. In both cases, the curves are
plotted for temperatures varying from TI = 0 to TI = 1 in
steps of 0.1 (top to bottom) in units ~ω/kB.

High-energy regime

To study the regime of large energies, we first show
that Gaussian operations are optimal to generate entan-
glement from the ground state. If the state is pure, the
entanglement of formation is simply given by the entropy
of the local state. For a given amount of work, the uni-
tary maximizing EoF will then be precisely the expression
of Eq. (11), as the thermal state maximizes the entropy
for a given energy. Given two bosonic modes, this op-
eration can be implemented by a two-mode squeezing
operation. In the protocols that we have considered, the
first step consists of cooling. Whenever the ground state
is reached, the Gaussian correlating operation is optimal.
This occurs whenWI > −F

(
τS(β)

)
, and we conclude that

the protocol is certainly optimal when W � −F
(
τS(β)

)
.
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A fundamental connection between thermodynamics and information theory arises from the fact
that correlations exhibit an inherent work value. For noninteracting systems this translates to a work
cost for establishing correlations. Here we investigate the relationship between work and correlations
in the presence of interactions that cannot be controlled or removed. For such naturally coupled
systems, which are correlated even in thermal equilibrium, we determine general strategies that
can reduce the work cost of correlations, and illustrate these for a selection of exemplary physical
systems.

I. INTRODUCTION

Quantum information (QI) and quantum thermody-
namics (QT) can both be framed as resource theories [1].
Based on the fundamental laws of quantum physics, these
theories describe the (minimal) resources needed to per-
form certain tasks of interest. In order to identify the
relevant resources, one first determines which states and
operations are freely available, taking into account practi-
cal limitations on physical operations. Within QT, ther-
mal systems and energy preserving operations are consid-
ered to be “for free”, whereas systems out of equilibrium
and operations that require external energy constitute
resources [2, 3]. In QI, on the other hand, the paradig-
matic task is efficient communication. In this context
one assumes local operations and classical communica-
tion (LOCC) to be for free, whereas entangled quantum
systems are resources that enable tasks beyond the re-
strictions of LOCC [4, 5].

Both of these resource theories can be considered to be
simplifications of a more general physical framework: In
either case only the restrictions of one area are taken into
account. However, especially in quantum systems limi-
tations from both thermodynamics and information the-
ory present themselves simultaneously, which has greatly
stimulated investigations of the connection between QI
and QT (see Refs. [6–8] for recent reviews). For instance,
locality restrictions on the allowed operations can limit
the efficiency of thermodynamic processes [9–14], while
correlations can enhance the performance of thermody-
namic tasks [10, 15–21], and may even change the natural
direction of the heat flow [22, 23]. Conversely, a nonzero
ambient temperature induces a nonzero entropy, which
limits the capacity for establishing (quantum) correla-
tions [24, 25]. To overcome the constraints of LOCC, QI
tasks hence require a supply of thermodynamic resources
in the form of free energy.

∗ nicolai.friis@uibk.ac.at
† marcus.huber@univie.ac.at
‡ marti.perarnau@icfo.es

Here, we aim to study the exchange between energy
and correlations in the particularly transparent setting
considered in Refs. [24, 25]: Given a collection of uncor-
related thermal states at the same temperature T , one
is interested in determining the minimal energy W that
is needed to create (quantum) correlations. For a bipar-
tite system with access to an auxiliary thermal bath at
temperature T , one finds the relation [15, 25–27]

W ≥ T∆IS1S2
, (1)

where ∆IS1S2
is the gain of correlations between the sub-

systems S1 and S2 as measured by the mutual infor-
mation, and we note that we work in units such that
~ = kB = 1 throughout this paper. The expression in
Eq. (1) represents a fundamental bound on the exchange
between energy and correlations, if the subsystems S1

and S2 are not interacting, that is, if the systems Hamil-
tonian is of the form HS = HS1

+ HS2
. In this work we

relax this assumption, and explore how the relation in
Eq. (1) is modified for interacting systems.

An important difference to previous results lies in the
fact that thermal states of interacting Hamiltonians are
generally already correlated, and may potentially even
be entangled [28]. This naturally raises the question of
whether the presence of interactions provides advantages
for the generation of (additional) correlations. We an-
swer this question affirmatively, by constructing explicit
strategies to achieve W < T∆IS1S2

for some energy range
in any finite-dimensional system with arbitrary interact-
ing Hamiltonian. While these procedures can improve on
the best protocols for non-interacting systems, they are
not necessarily optimal in the sense that other protocols
may exist that generate more correlations at the same en-
ergy cost. To complement this approach we therefore de-
velop optimal strategies for two physically relevant cases:
two interacting, fermionic or bosonic modes.

This paper is structured as follows. We first provide
a short summary of the framework for this investiga-
tion in Sec. II. We then approach the problem of gen-
erating correlations in interacting systems in Sec. III,
where we develop general strategies to use the energy

mailto:nicolai.friis@uibk.ac.at
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contained in the interactions to improve upon the bound
in Eq. (1), and explicitly demonstrate their applicabil-
ity in a system of two qubits. In Sec. IV, we then turn
to another finite-dimensional example, two interacting,
fermionic modes. This system, restricted by superselec-
tion rules, is amenable to a numerical approach that we
use to determine the optimal conversion of energy into
correlations. Finally, in Sec. V, we study the generation
of correlations in the infinite-dimensional system of two
interacting, bosonic modes.

II. FRAMEWORK

We consider a bipartite system S, made up of sub-
systems S1 and S2, initially at thermal equilibrium at
ambient temperature T = 1/β, described by a thermal
state

τ(β) = Z−1(β) e−βHS , (2)

where Z(β) = Tr(e−βHS ) is the partition function, and
HS is the system Hamiltonian. We further assume the
presence of an auxiliary heat bath B, that is, an arbi-
trarily large system in thermal equilibrium with S. The
total Hamiltonian is H = HS +HB , and the initial state
can be written as τSB(β) = τ(β) ⊗ τB(β). In order to
transform this equilibrium state, we consider arbitrary
unitary operations USB on SB. Since the joint systems
SB is closed, these unitaries correspond to the most gen-
eral operations permissable in this situation. The average
work cost of transforming the state of S from τ(β) to a

final state ρ = TrB(USBτSB(β)U†SB) is given by,

W = Tr
(
H
[
USBτSB(β)U†SB − τSB(β)

])
, (3)

which corresponds to the total external energy input (see,
e.g., Refs. [29, 30]). In Ref. [27] (see also Refs. [31–33] for
the same result in related frameworks), it is shown that
W can be bounded by the (nonequilibrium) free energy
difference,

W (τ → ρ) ≥ ∆FS = F (ρ)− F (τ), (4)

where the free energy with respect to the reservoir at
temperature T is

F (ρ) = E(ρ) − T S(ρ) . (5)

Here, E(ρ) = Tr
(
HSρ

)
is the average energy, and S(ρ) =

−Tr
(
ρ ln(ρ)

)
is the von Neumann entropy. Note that

F (ρ) depends only on the state of S and the tempera-
ture of B. Equality in (4) can be obtained in a quasistatic
process [31–33], in which case the work cost becomes min-
imal.

We now wish to invest some work W to increase the
correlations within the bipartite state of S as much as
possible. (Note that B is only an auxiliary system and

we do not wish to create correlations between S and B.)
In Refs. [24, 25] this problem was considered for nonin-
teracting Hamiltonians, HS = HS1

+HS2
. Here, we want

to depart from this paradigm and consider an interacting
Hamiltonian of the form

HS = HS1
+ HS2

+ HI . (6)

As discussed above, the work cost of transforming τ(β) to
a final state ρ satisfies, W (τ → ρ) ≥ ∆FS = F (ρ)−F (τ),
and equality can be achieved in a quasi-static process and
with a sufficiently large bath [31–33]. The task is then
to maximize the correlations of ρ under the constraint
F (ρ) − F (τ) ≤ W , where W is the amount of available
work.

Before continuing, note that the main ingredients of
the investigations in Refs. [24, 25] are preserved:

(i) The initial state is in thermal equilibrium, and there-
fore, the energy cost of transforming τ(β) to any final
state ρ is nonnegative, W ≥ 0.

(ii) We assume arbitrary (in particular, unitary) oper-
ations can be performed on S and the auxiliary
thermal bath, which allows obtaining fundamental
bounds on the work cost of correlations.

We quantify the amount of correlations between the sub-
systems by the mutual information,

IS1S2
(ρ) = S(ρS1

) + S(ρS2
) − S(ρ) , (7)

where ρS1(S2) = TrS2(S1)(ρ) are the reduced states of the
subsystems. The main quantity of interest throughout
this paper will be the correlations gain,

∆IS1S2
= IS1S2

(ρ) − IS1S2
(τ). (8)

That is, we take a point of view inspired by Landauer’s
principle, and ask how many units of correlations ∆IS1S2

can be newly generated (on top of the preexisting corre-
lations) at the expense of one unit of energy. Note that,
in the noninteracting case, ∆IS1S2

and IS1S2
coincide, as

the initial thermal state of the Hamiltonian HS1
+ HS2

is an uncorrelated product state. In the interacting case,
∆IS1S2

and IS1S2
still arise from the same optimization

procedure, but IS1S2
≥ ∆IS1S2

. Since ∆IS1S2
quantifies

the amount of correlations generated through the invest-
ment of W , we first focus on ∆IS1S2

, establishing strate-
gies to achieve W < T∆IS1S2

in Sec. III.

III. GENERAL CONSIDERATIONS

A. Work cost of generating correlations

Let us now relate the correlation gain ∆IS1S2
to the

minimal work cost ∆FS. Inserting the Hamiltonian from
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Eq. (6) into (4) one obtains

∆FS = Tr
(
HS1

[ρ− τ ] + HS2
[ρ− τ ]

)
+ Tr

(
HI [ρ− τ ]

)

+ T
[
S(τ) − S(ρ)

]
. (9)

On the other hand, for the difference in mutual infor-
mation from Eq. (8) one finds T ∆IS1S2

= T
[
S(τ) −

S(ρ)
]

+ T
[
S(ρS1

)− S(τS1
)
]

+ T
[
S(ρS2

)− S(τS2
)
]
. After

some straightforward manipulations we then arrive at

∆FS = T∆IS1S2
+ Tr

(
HI [ρ− τ ]

)
+ ∆F̃S1

+ ∆F̃S2
, (10)

where the quantities F̃S1(S2) correspond to nonequilib-
rium free energies with respect to the local Hamiltonians,
i.e.,

F̃Si
(ρ) = Tr

(
HSi

ρ
)
− TS(ρSi

) (11)

with ρS1(S2) = Tr
S2(S1)

ρ. Here, it is important to note
that the marginals τS1(S2) = Tr

S2(S1)
τ of the initial ther-

mal state are not themselves thermal states with respect
to the local Hamiltonians, τS1(S2) 6= Z−1Si

exp(−βHSi
). It

can therefore be inferred that, while ∆FS ≥ 0 since the
initial state τ is at thermal equilibrium with the bath,
the quantities ∆F̃Si

may have either sign. Only when HI

vanishes are the marginals of τ also thermal states with
minimal free energy and

∑
i ∆F̃Si

is nonnegative. In this
case one obtains (see Ref. [25] for a detailed derivation)
the bound

T∆IS1S2
(ρ) ≤ ∆FS ≤W, if HI = 0, (12)

which shows that, for noninteracting systems, at least
T∆IS1S2

units of work have to be invested to increase
the correlations of the systems by the amount ∆IS1S2

.

B. Strategies to utilize the interactions

In this section we determine strategies that can poten-
tially outperform the bound of Eq. (12) by making use
of the energy provided by the interactions. We formu-
late these strategies for arbitrary Hamiltonians of bipar-
tite systems, whose subsystems S1 and S2 can be arbi-
trary finite-dimensional quantum systems, qudits, with
Hilbert spaces HS1

and HS2
, and dimensions d1 and d2,

respectively. The density operators for such systems
can be written in a generalized Bloch-Fano decomposi-
tion [34, 35], that is

ρ =
1

d1d2

(
1S +

d21−1∑

m=1

am σ
S1
m ⊗ 1S2

+

d22−1∑

n=1

bn1S1
⊗ σS2

n

+

d21−1∑

m=1

d22−1∑

n=1

cmn σ
S1
m ⊗ σS2

n

)
, (13)

where the Hermitean operators σ
Si
m satisfy Tr(σ

Si
mσ

Si
n ) =

2δmn and Tr(σ
Si
m ) = 0, and the real coefficients am, bn,

and tmn are subject to constraints arising from the pos-
itivity of ρ. The reduced states are then immediately
obtained as

ρS1
=

1

d1

(
1S1

+

d21−1∑

m=1

am σ
S1
m

)
, (14a)

ρS2
=

1

d2

(
1S2

+

d22−1∑

n=1

bn σ
S2
n

)
. (14b)

The Hermitean interaction Hamiltonian can similarly be
written as

HI =

d21−1∑

m=1

d22−1∑

n=1

εmn σ
S1
m ⊗ σS2

n , (15)

with real coefficients εmn. Any terms of the form 1S1
⊗σS2

m

and σS1
m ⊗ 1S2

that may appear in such a decomposition
of HI can be absorbed into the local Hamiltonians HSi

.

Returning to the relation of Eq. (10), notice that the
interactions allow surpassing the bound in Eq. (12) when-

ever Tr
(
HI [ρ− τ ]

)
+
∑
i ∆F̃Si

is negative. The expansion
of Eq. (13) further permits treating each of these terms

independently: The terms ∆F̃Si
depend only on the local

Bloch vector components am and bn, for i = 1 and i = 2,
respectively, whereas the interaction term Tr

(
HI [ρ− τ ]

)

depends only on the correlation tensor cmn. With this we
can formulate two complementary strategies. However,
it is important to keep in mind that any choice of the
coefficients cmn, am and bn is subject to the positivity
constraint ρ ≥ 0.

First, we focus on the local terms ∆F̃Si
. Defining

the local Gibbs states as γSi
≡ Z−1Si

e−βHSi , which are
generically different from the local initial states τS1(S2) =

Tr
S2(S1)

τ , it is useful to rewrite ∆F̃Si
as,

β∆F̃Si
= β

(
F (ρSi

) − F (γSi
)
)
− β

(
F (τSi

) − F (γSi
)
)

= S(ρSi
||γSi

) − S(τSi
||γSi

) , (16)

where S(ρ||τ) = −S(ρ)−Tr(ρ ln τ) is the relative entropy.
Here, we have used that β

[
F (ρ)−F

(
τ(β)

)]
= S(ρ||τ(β)),

which can easily be shown using Eqs. (2) and (5). Since
S( . || . ) is a measure of distance between two quantum

states, the quantities ∆F̃Si
are negative whenever the fi-

nal reduced states ρSi
are closer to the local Gibbs states

γSi
than the initial state marginals τSi

. This provides

a simple strategy to minimize ∆F̃Si
: The Bloch coeffi-

cients a
(ρ)
m and b

(ρ)
n of the final state ρ should to be chosen

as close as possible to a
(γ)
m and b

(γ)
m , respectively, where

a
(γ)
m = d1

2 Tr(γS1
σS1
m ) and b

(γ)
n = d2

2 Tr(γS2
σS2
n ). This strat-

egy ensures that ∆F̃Si
< 0.

The second strategy entails the minimization of the
term Tr

(
HI [ρ − τ ]

)
. Using Eqs. (13) and (15), we can

express it in terms of the correlation tensors c
(ρ)
mn and
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c
(τ)
mn of ρ and τ , respectively, obtaining

Tr
(
HI [ρ− τ ]

)
=

d21−1∑

m=1

d22−1∑

n=1

(
c(ρ)mn − c(τ)mn

)
εmn . (17)

This relation has a clear geometrical interpretation.

Mapping c
(ρ)
mn, c

(τ)
mn, and εmn to vectors c(ρ), c(τ), and ε

in a Euclidean vector space of dimension (d21−1)(d22−1),
the condition of Eq. (17) becomes

Tr
(
HI [ρ− τ ]

)
= (c(ρ) − c(τ)) · ε . (18)

To minimize the expression in (18) it is hence desirable
to select the vector (c(ρ) − c(τ)) to be as antiparallel as
possible to ε.

The considerations discussed in this section hence pro-
vide two complementary strategies to obtain βW <

∆IS1S2
, as desired. In general, the choices of a

(ρ)
m , b

(ρ)
m ,

and c
(ρ)
mn are limited by the positivity constraint, ρ ≥ 0

(and of course also by the amount of available work, W ).
In the next section we illustrate possible issues with the
positivity of ρ in more detail for a particular example of
two interacting qubits.

C. Improved generation of correlations for two
qubits

We consider a system of two qubits, coupled by the
Hamiltonian

HS = ω
(
σS1
z + σS2

z

)
+ ε σS1

z ⊗ σS2
z , (19)

where ω ≥ 0 and ε ∈ R can take either sign. In this
simple example, the presence of the interaction Hamil-
tonian HI = ε σS1

z ⊗ σS2
z does not change the eigenstates

of HS, but the eigenvalues of the noninteracting system
are modified to (ε± 2ω) and −ε (twice degenerate). The
initial thermal state τ(β) = e−βHS/Z is hence of the form

τ(β) = Z−1 diag{e−β(ε+2ω), eβε, eβε, e−β(ε−2ω)} (20)

with Z = Tr
(
e−βHS

)
≥ 0. The nonzero coefficients of

the Bloch decomposition of τ(β) are

a(τ)z = b(τ)z = − 2Z−1e−βε sinh(2βω) < 0 , (21a)

c(τ)zz = 1 − 4eβε

Z . (21b)

To correlate the system, we apply a two-step protocol
based on the strategies discussed in Sec. III B. In the
first phase of the protocol, step I, we aim to minimize
the term Tr

(
HI [ρ − τ ]

)
. To do this, we transform the

state τ to ρI, such that the local Bloch vector components

remain invariant, a
(ρI)
z = b

(ρI)
z = a

(τ)
z , while the (nonzero)

correlation tensor coefficient is mapped to

c
(ρI)
zz = c(τ)zz − sgn(ε)αI , (22)

for αI ≥ 0. With this, one finds Tr
(
HI [ρI − τ ]

)
= −|ε|αI

and from Eq. (10) we obtain

WI = T ∆IS1S2
− |ε|αI , (23)

where we assumed that the process is quasistatic, so that
W = ∆FS. (Note that the same assumption is made also
later in step II.) The correlations are hence generated
at a work cost that is lower than in the noninteracting
case, WI ≤ T ∆IS1S2

. However, it is crucial to note that
the transformation in Eq. (22) is limited by the positivity

constraint, ρI ≥ 0, requiring 2|a(τ)z | − 1 ≤ c
(ρI)
zz ≤ 1. De-

pending on the sign of the interaction term, one of these
bounds is reached, when enough energy is supplied. That

is, c
(ρI)
zz eventually tends towards either c

(ρI)
zz = 2|a(τ)z |−1

or c
(ρI)
zz = 1 for ε > 0 or ε < 0, respectively.

If more energy is available than is needed to saturate
the positivity constrain in step I, we may employ the
complementary strategy discussed in Sec. III B in step II,
the second phase of the protocol. Now, we keep the corre-
lation tensor fixed, while changing the local Bloch vector
components to minimize ∆F̃Si

. This entails moving the
marginals closer to the states γSi

that are locally thermal
with respect to HSi

. These local Gibbs states are here
given by

γSi
=

e−βHSi

ZSi

= 1
2

(
12 − tanh(βω)σSi

z

)
, (24)

with a
(γ)
z = − tanh(βω) < 0. We hence map ρI to the

state ρII with Bloch vector components given by

a
(ρII)
z = (1− αII) a

(τ)
z + αII a

(γ)
z , (25)

where 0 ≤ αII ≤ 1. Again, the positivity constraint ρII ≥
0 must still be taken into account. For ε < 0 we find that
the full range of αII is compatible with the positivity of
ρII. The work cost of step II is given by WII = T∆IS1S2

+

∆F̃S1
+∆F̃S2

, and, as illustrated in Fig. 1, we indeed find

that ∆F̃Si
≤ 0 for all values of T ≥ 0, 0 ≤ αII ≤ 1, and

ε < 0.

For ε > 0, on the other hand, the positivity con-

straints require that |a(ρII)
z | ≤ |a − z(τ)|. Since a

(τ)
z < 0

and a
(γ)
z = − tanh(βω) < 0, Eq. (25) yields |a(ρII)

z | =

(1 − αII)|a(τ)z | + αII tanh(βω) ≥ |a(τ)z |. Unfortunately,

since |a(τ)z | = sinh(2βω)/
(
cosh(2βω)+e−βε

)
≤ tanh(βω),

one finds that |a(ρII)
z | ≥ |a − z(τ)|, that is, the positivity

constraint does not allow for step II of the protocol to be
carried out for ε > 0.

In addition to the strategies discussed here, the states
obtained after steps I and II may be further correlated
until the maximal value of correlation is reached. How-
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FIG. 1. Advantage in correlation cost: During step II of
the protocol to generate correlations between two qubits, an
advantage over the noninteracting case arises when ∆F̃Si

from

Eq. (11) becomes negative. ∆F̃Si
is plotted here against the

temperature T in units of ω (recall that we use units where
~ = kB = 1) for αII = 0.5, and the different curves corre-
spond to values of ε (also in units of ω) from ε = 0 (top) to
ε = −1 (bottom) in steps of 0.1. The advantage increases
with increasing coupling strength ε, but does not monotoni-
cally decrease with the temperature. Instead, the advantage
becomes maximal at a finite temperature. Although curves
are only shown for a fixed value αII = 0.5, we have checked
that other values yield analogous behaviour and the advan-
tage increases monotonically with αII.

ever, the work cost per newly generated unit of correla-
tion beyond this point may be the same, or even higher
than in the noninteracting case. We shall shed light on
this possibility in the next sections, by studying in detail
protocols to correlate bipartite systems of fermions and
bosons.

IV. TWO FERMIONIC MODES

In this section, we consider the two systems S1 and
S2, which are to be correlated, to be two fermionic modes
with ladder operators b

1
, b†

1
and b

2
, b†

2
, respectively. Such

fermionic systems have been well studied in the context
of quantum information processing, see, e.g., Refs. [36–
38], but we shall briefly review some key features. The
annihilation and creation operators satisfy the usual anti-
commutation relations {bm, b†n} = δmn and {bm, bn} = 0.
While the Pauli exclusion principle limits the dimen-
sion of the corresponding two-mode Fock space to 4,
the anticommutation relations nonetheless imply a dif-
ferent subsystem structure as compared to a two-qubit
Hilbert space [39]. Despite this inequivalence1 of qubits

1 Note that n-mode fermionic Fock spaces are isomorphic to n-
qubit Hilbert spaces via maps such as the Jordan-Wigner trans-
formation. However, local operators in one space are generally
mapped to nonlocal ones in the other. The marginals of an n-

and fermionic modes, the marginals and correlation mea-
sures for the fermionic system are well-defined when im-
posing a superselection rule that forbids superpositions
of even and odd numbers of fermions [40, 41].

The fermionic system is hence of interest for the follow-
ing reasons: First, the anticommutation relations and the
restrictions of the superselection rule provide a qualita-
tive difference to the qubit case, which makes for an inter-
esting comparison. Second, the low-dimensional Hilbert
space is amenable to a numerical treatment, allowing a
rather general approach to optimal protocols for the gen-
eration of correlations. Third, fermionic fields form a
conceptually fundamental ingredient in the current view
of matter in the universe in terms of relativistic quantum
field theory.

A. Hamiltonian and initial thermal state

Let us now turn to the specific system Hamiltonian
that we consider in this section, H = HS1

+ HS2
+ HI .

For the noninteracting part, we consider the standard
Hamiltonian for two modes of the same frequency ω, i.e.,

HS1
+ HS2

= ω
(
b†
1
b
1

+ b†
2
b
2

)
. (26)

For the interaction between the modes, we will em-
ploy the most general two-mode coupling term that is
quadratic in the mode operators, given by

HI = Heven + Hodd

= εeven
(
b
1
b
2

+ b†
2
b†
1

)
+ εodd

(
b†
1
b
2

+ b†
2
b
1

)
, (27)

where Heven couples only the states || 0 〉〉 and
|| 11 〉〉 || 12 〉〉 = b†

1
b†
2
|| 0 〉〉 in the even subspace, whileHodd

acts in the odd subspace spanned by || 11 〉〉 = b†
1
|| 0 〉〉

and || 12 〉〉 = b†
2
|| 0 〉〉. Here || 0 〉〉 is the vacuum state

satisfying bi || 0 〉〉 = 0 ∀ i, and the double-lined ket no-
tation indicates the antisymmetrized tensor product for
the excited states, i.e., || 11 〉〉 || 12 〉〉 = || 11 〉〉 ∧ || 12 〉〉 =
− || 12 〉〉 || 11 〉〉 (see, e.g., Ref. [39] for more information).

The thermal state τ(β) of H can be computed straight-
forwardly. The eigenvalues of H read,

λ1,4 = ω ±
√
ω2 + ε2even , (28a)

λ2,3 = ω ± εodd , (28b)

where the labels 3, 4 refer to the negative relative sign,

mode fermionic state ρ are hence generally not isomorphic to
those of the n-qubit state ρ̃, even if ρ̃ is related to ρ via an
isomorphism.
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and the corresponding eigenstates are given by

|| λ1,4 〉〉 =
1√

ε2even + λ21,4

(
εeven || 0 〉〉 − λ1,4 || 11 〉〉|| 12 〉〉

)
,

(29a)

|| λ2,3 〉〉 =
1√
2

(
|| 12 〉〉 ± || 11 〉〉

)
. (29b)

Then, τ(β) can the be written as,

τ(β) = Z−1(β)
∑

i

e−βλi || λi 〉〉〈〈 λi || , (30)

where the partition function is Z(β) =
∑
i e
−βλi . It

is important to note that τ(β) already contains corre-
lations, which are computed in detail in the Appendix.

B. Generation of Correlations

We now consider the task of correlating τ(β) fur-
ther. The simple structure of the system (an only four-
dimensional Hilbert space that is further restricted by su-
perselection rules) allows us to consider the most general
protocols beyond the strategies discussed in Sec. III B.
That is, given some available work W , we consider
the possibility to transform τ to any state ρ, provided
∆FS(τ → ρ) ≤ W is satisfied. In order to maxi-
mize the created correlations, ∆IS1S2

, we conveniently
parametrize the final state ρ, and numerically optimize
its mutual information IS1S2

(ρ) under the constraint of a
maximally available free energy.

Since the final state needs to respect the superselection
rule that forbids superpositions of even and odd numbers
of fermions [40], the four-dimensional Fock space splits
into two two-dimensional spaces. An arbitrary two-mode
final state may therefore be written as a convex combina-
tion of two density operators, ρeven and ρodd, correspond-
ing to the subspaces of even and odd fermion numbers,
respectively. We hence write

ρ = p ρeven + (1− p) ρodd , (31)

where 0 < p < 1 . For each of the two subspaces, we then
use a single-qubit Bloch representation, i.e.,

ρeven = 1
2

([
1 + zeven

]
||0〉〉〈〈0|| (32a)

+
[
1− zeven

]
||11 〉〉||12 〉〉〈〈12 ||〈〈11 ||

+
[
(xeven − iyeven) ||0〉〉〈〈12 ||〈〈11 || + H. c.

])
,

ρodd = 1
2

([
1 + zodd

]
||12 〉〉〈〈12 || +

[
1− zodd

]
||11 〉〉〈〈11 ||

+
[
(xodd − iyodd) ||12 〉〉〈〈11 || + H. c.

])
, (32b)

where the coefficients satisfy |xeven,odd| ≤ 1, |yeven,odd| ≤

1, |zeven,odd| ≤ 1, and

r2even = x2even + y2even + z2even ≤ 1 , (33a)

r2odd = x2odd + y2odd + z2odd ≤ 1 . (33b)

In this parametrization, the entropy of the final state
can easily be obtained via its eigenvalues p

2 (1 ± reven)

and 1−p
2 (1± rodd). The energy of the final state, in turn,

is

E(ρ) = ω(1− p zeven)− p εevenxeven + (1− p)εoddxodd.
(34)

Lastly, the final state marginals are of the form

ρS1
= 1

2

(
1 + p zeven + (1− p)zodd

)
||0〉〉〈〈0|| (35a)

+ 1
2

(
1− p zeven − (1− p)zodd

)
||11 〉〉〈〈11 || ,

ρS2
= 1

2

(
1 + p zeven − (1− p)zodd

)
||0〉〉〈〈0|| (35b)

+ 1
2

(
1− p zeven + (1− p)zodd

)
||12 〉〉〈〈12 || .

For the illustration of the results, it is convenient to spec-
ify the amount of available input energy in units of Wmin,
the minimal free energy difference2 to a maximally cor-
related state. Taking into account that such a maximally
correlated state must be pure, and that the free energy
of the initial state is F (τ) = −T ln(Z), we find

Wmin = ω − max{|εeven|, |εodd|} + T ln(Z) . (36)

With this, we may numerically evaluate the maximal
amount of correlations that can be created at a fixed
temperature T and a fixed energy input W/Wmin. The
results of the optimization allows us to compare the en-
ergy cost of optimal protocols to generate correlations,
for both interacting (εeven,odd 6= 0) and noninteracting
systems (εeven,odd = 0). The results are shown in Fig. 2.

In agreement with our considerations in Sec. III B, one
observes an initial regime where the interactions provide
an advantage. However, at some point, the energy cost
of ∆IS1S2

becomes higher for interacting systems than
for noninteracting ones. This is to be expected: Since
the interacting system is correlated initially, the maximal
value of ∆IS1S2

is always lower than in the noninteracting
case.

2 Note that the minimal energy for maximal correlations (Wmin)
depends on the coupling strength. Therefore, the functions
∆Iε6=0 and ∆Iε=0, whose difference is plotted in Fig. 2, would
be multiplied by different values when converting the plots of
Fig. 2 to absolute energy costs. This would result in shifted in-
tersections with the horizontal axes. Nonetheless, since Wmin is
maximal in the absence of interactions, the intersections would
all shift to the left, leaving the conclusion unchanged, that the
presence of interactions may make the creation of new correla-
tions more expensive, even if the overall amount of correlations
is larger in the end.
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(a)

(b)

(c)

FIG. 2. Fermionic newly generated correlation cost:
The difference in correlations that can be newly generated
for an available energy W (in units of Wmin) in the presence
(∆Iε6=0) and absence (∆Iε=0) of interactions is shown for tem-
peratures T = 0.1, . . . , 1 (in units of ~ω/kB) in steps of 0.1
(blue to red, top to bottom) for the ratios εeven/εodd = 2, 1,
and 0.5 in (a),(b), and (c), respectively.

For a complete picture of the situation, it is also en-
lightening to study the behaviour of the total correlations
IS1S2

(ρ) for interacting and noninteracting systems, as
shown in Fig. 3. In all cases that we have considered, the
presence of the interactions leads to a larger amount of
final state correlations IS1S2

(ρ), irrespective of the (rela-
tive) size and sign of the coupling constants.

(a) 0.0 0.2 0.4 0.6 0.8 1.0

W
Wmin

0.2

0.4

0.6

0.8

1.

1.2

2ln(2)

ℐS1 S2(ρ)

2 ϵeven = ϵodd
= ω

ϵeven = ϵodd = 0

0.0 0.5 1.0 1.5
W [ω]

0.2

0.6

1.

2ln(2)

(b)

(c)

FIG. 3. Fermionic correlation cost: The maximal corre-
lation of the final state that is achievable for a fixed input
energy W [in units of Wmin from Eq. (36)] is shown for tem-
peratures T = 0.1, . . . , 1 (in units of ~ω/kB) in steps of 0.1
(blue to red, top to bottom) for the ratios εeven/εodd = 2, 1,
and 0.5 in (a),(b), and (c), respectively. In all cases, the
achievable final correlation is larger in the presence of inter-
actions (solid lines) than in their absence (dashed lines). In
(a) this can be seen from the inset plot, where the horizontal
axis is not scaled with Wmin. For (b) and (c) one may deduce
this directly from the plots, since the solid lines are strictly
above their corresponding dashed lines, and Wmin is maximal
when εeven = εodd = 0.

V. TWO BOSONIC MODES

In this section we study the creation of correlations for
two bosonic modes. We present an example for which
we explicitly show that the overall final-state correlation
IS1S2

(ρ) is always larger in the presence of interactions.
This complements the observations made in Fig. 3, where
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we come to same conclusion using a numerical approach.

Let us now consider the simple, yet versatile system of
two bosonic modes with creation and annihilation op-

erators ai and a†i (i = 1, 2), respectively. The mode
operators satisfy the canonical commutation relations

[ai , a
†
j ] = δij and [ai , aj ] = 0. Such systems of two

(or more) harmonics oscillators are of fundamental im-
portance to quantum optics and quantum field theory.
The correlations between bosonic modes have been ex-
tensively studied in continuous variable quantum infor-
mation (see, e.g., Refs. [42, 43]) but they are also of in-
terest in more specialized lines of research, such as, e.g.,
studies of entanglement in relativistic quantum field the-
ory, see for example Refs. [44–46]. In addition to the
usual free Hamiltonian

HS1
+ HS2

= ω
(
a†

1
a

1
+ a†

2
a

2

)
, (37)

where we have assumed that the two modes have the
same frequency ω, we will consider the interaction term

HI = ε
(
a

1
a

2
+ a†

1
a†

2

)
, (38)

with ε ∈ R. Since the system Hamiltonian HS = HS1
+

HS2
+HI is quadratic in the mode operators, any thermal

state τ of HS is a Gaussian state that is fully described
by its second moments, that is, its covariance matrix ΓS

with components

(
ΓS

)
mn

= Tr
(
τ
[
XmXn + XnXm

])
, (39)

with the quadrature operators X2n−1 =
(
an + a†n

)
/
√

2

and X2n = −i
(
an−a†n

)
/
√

2. The first moments Tr
(
τXn

)
,

which would normally also enter into Eq. (39), vanish for
the state τ . This can easily be seen by diagonalizing HS

using the Bogoliubov transformation

c
1

= cosh(u) a
1

+ sinh(u) a†
2
, (40a)

c
2

= cosh(u) a
2

+ sinh(u) a†
1
, (40b)

where u = 1
2 artanh(ε/ω), such that [ci , c

†
j ] = δij and

[ci , cj ] = 0. With this transformation, the system
Hamiltonian becomes

HS = ω̃
(
c†
1
c
1

+ c†
2
c
2

)
− 2ω̃ sinh2(u) , (41)

where ω̃ =
√
ω2 − ε2. The eigenstates of HS are therefore

the eigenstates of c†
1
c
1

and c†
2
c
2
. Expanding the thermal

state τ = Z−1e−βHS in terms of these eigenstates one

quickly obtains Tr
(
τci
)

= Tr
(
τc†i
)

= 0. Since the Bo-

goliubov transformation relating the operators ai, a
†
j and

ci, c
†
j is linear, this implies that also Tr

(
τai
)

= Tr
(
τa†i
)

=
0. The first moments vanish and ΓS completely describes
the state τ .

To assess the properties of the initial state, we then de-

fine the covariance matrix Γ
(c)
S with respect to the opera-

tors ci, in complete analogy to Eq. (39). For the thermal

state τ , this 4× 4 matrix is proportional to the identity,
that is,

Γ
(c)
S = ν(T )14 = coth( ω̃

2T )14 , (42)

where the identity 14 is the covariance matrix of the pure
two-mode vacuum state with respect to the operators ci.
The mixedness of the state is hence captured solely by the

prefactor ν(T ) = coth( ω̃
2T ). The matrices Γ

(c)
S and ΓS are

related by a symplectic transformation S corresponding
to the unitary Bogoliubov transformation of Eq. (40),
such that

ΓS = S Γ
(c)
S ST . (43)

The transformation S leaves the symplectic form Ω, with
components Ωkl = −i [Xk ,Xl ] invariant, SΩST = Ω.
Consequently, also the eigenvalues ν(T ) of |iΩΓS|, the
symplectic eigenvalues are left unchanged by the trans-
formation S. This means that, up to the prefactor ν(T ),
the covariance matrix ΓS = ν(T )SST represents a pure
two-mode state, which is hence locally equivalent to two-
mode squeezed state [47]. Due to the presence of ν(T ),
the overall state is nonetheless mixed and correlated, but
may or may not be entangled, depending on the size of
ν(T ) [25, 48].

Any available energy W may then be used to further
correlate the system by a combination of cooling [i.e.,
reducing ν(T )] and two-mode squeezing along the di-
rection in phase space corresponding to the two-mode
squeezed state SST . These transformations leave the
subsystems in local thermal states with respect to HS1

and HS2
and therefore optimally correlate3 the subsys-

tems at any given work cost [24]. Consequently, the pres-
ence of the interaction Hamiltonian HI is here equivalent
to an increased energy supply in the noninteracting case,
and the overall correlations IS1S2

(ρ) are always larger
than in the noninteracting case at a fixed work cost W .

The correlations that can in principle be generated in
this infinite-dimensional Hilbert space are unbounded.
However, the energy cost of creating additional correla-
tions increases as the state becomes more correlated. The
newly generated correlations ∆IS1S2

may hence be more
or less expensive than in the noninteracting case, depend-
ing on the initial temperature, coupling strength ε, and
the available energy.

VI. CONCLUSION

We have investigated the work cost of creating corre-
lations between interacting quantum systems and com-
pared our results to previous studies [24, 25] of the corre-

3 Note that two-mode squeezing is generally not the optimal entan-
gling transformation and may be outperformed by non-Gaussian
transformations [25].



9

lation cost in noninteracting systems. While the notion of
isolated, noninteracting systems may appear more natu-
ral from the perspective of quantum communication sce-
narios, our approach here is motivated by the ubiquity of
interactions present in nature. Hence, assuming that the
presence of the interactions cannot be avoided or con-
trolled, we find that the interactions can nonetheless be
harnessed.

For such naturally occurring interactions we have iden-
tified general strategies for finite-dimensional systems to
reduce the energy cost of creating correlations. These
strategies, which apply to any finite-dimensional bipar-
tite system with arbitrary interaction Hamiltonian, im-
prove on previous bounds for non-interacting systems, at
least in some low-energy regime. Nevertheless, the exact
relation between the interactions and the correlation cost
is complicated. The work cost of correlations strongly de-
pends on the exact configuration of the interaction terms
and thus on the underlying physics. To illustrate the gen-
eral strategies, we therefore choose some exemplary phys-
ical systems — qubits, as well as fermionic and bosonic
modes — to showcase the usefulness of the interactions.

In our examination, we have focused on the mutual
information as a measure of the generated correlations,
capturing both classical and genuine quantum correla-
tions. The notoriously difficult case of characterizing the
cost of entangling interacting quantum systems, which
would provide further insight into the relation between
the practically motivated resource theories of QI and QT,
is hence left open for future investigation.

Moreover, while we have here considered arbitrary op-
erations on the system, inevitable noise and practical de-

sign may favor operations that can be directly imple-
mented through the natural interactions present in the
underlying systems. It would hence be interesting to
compare such physically motivated protocols with the
optimal protocols derived here, including also noncyclic
processes where the interactions can be switched on or
off at will. Further open questions include the general
cost and impact of interactions on single-shot informa-
tion processing capabilities.
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Appendix: Correlations in a fermionic thermal state

Here we study the correlations present in the ini-
tial thermal state τβ of two fermionic modes, given by
Eq. (30). Whereas the thermal states of the noninter-
acting Hamiltonian (i.e., for εeven,odd = 0) are uncorre-
lated, the thermal states of interacting Hamiltonians fea-
ture some correlations. For instance, consider the ground
state, that is, the limit T → 0 (β →∞), which arises as
the eigenstate of the Hamiltonian with the smallest eigen-
value. As can be seen from Eq. (28), this can be either
|| λ3 〉〉 or || λ4 〉〉, depending on the relative sizes of |εodd|
and

√
ω2 + ε2even. That is,

τ(β →∞) =





ρ3 if |εodd| >
√
ω2 + ε2even

1
2

(
ρ3 + ρ4

)
if |εodd| =

√
ω2 + ε2even

ρ4 if |εodd| <
√
ω2 + ε2even

,

(A.1)

with ρ3 = || λ3 〉〉〈〈 λ3 || and ρ4 = || λ4 〉〉〈〈 λ4 ||. Both
|| λ3 〉〉 and || λ4 〉〉 are correlated, but only the former state
is maximally correlated. It is hence expected that the
relative sizes of the coupling constants strongly influence
the initial amount of correlations, see Fig. 4. To evaluate
the mutual information of Eq. (7), we still need to spec-
ify the reduced density operators. These are found to be
diagonal, with matching matrix elements, i.e.,

τS1
(β) = 1

2 (1 + τ0) || 0 〉〉〈〈 0 || + 1
2 (1− τ0) || 11 〉〉〈〈 11 || ,

(A.2a)

τS2
(β) = 1

2 (1 + τ0) || 0 〉〉〈〈 0 || + 1
2 (1− τ0) || 12 〉〉〈〈 12 || ,

(A.2b)

with the coefficient τ0 given by

τ0 =
ω sinh

(
β
√
ω2 + ε2even

)
√
ω2 + ε2even

(
cosh

(
βεodd

)
+ cosh

(
β
√
ω2 + ε2even

)) .

(A.3)

With the eigenvalues of the thermal state given by e−βλi

and those of the marginals by 1
2 (1±τ0) one can then easily

evaluate the entropies S(τ), S(τS1
) and S(τS2

), and hence
the mutual information, shown in Fig. 4.

(a)

(b)

(c)

FIG. 4. Fermionic thermal state correlation: The cor-
relation of the initial thermal state τ(β), as measured by the
mutual information IS1S2 , depend on the (relative) and ab-
solute sizes of the couplings εeven and εodd. The correlation
is plotted for temperatures T = 0(0.01), . . . , 1 (in units of
~ω/kB) in steps of 0.05 (blue to red, top to bottom) for the
ratios εeven/εodd = 2, 1, and 0.5 in (a),(b), and (c), respec-
tively.
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Quantum states that can yield work in a cyclical Hamiltonian process form one of the primary
resources in the context of quantum thermodynamics. Conversely, states whose average energy
cannot be lowered by unitary transformations are called passive. However, while work may be
extracted from non-passive states using arbitrary unitaries, the latter may be hard to realize in
practice. It is therefore pertinent to consider the passivity of states under restricted classes of
operations that can be feasibly implemented. Here, we ask how restrictive the class of Gaussian
unitaries is for the task of work extraction. We investigate the notion of Gaussian passivity, that
is, we present necessary and sufficient criteria identifying all states whose energy cannot be lowered
by Gaussian unitaries. For all other states we give a prescription for the Gaussian operations
that extract the maximal amount of energy. Finally, we show that the gap between passivity and
Gaussian passivity is maximal, i.e., Gaussian-passive states may still have a maximal amount of
energy that is extractable by arbitrary unitaries, even under entropy constraints.

I. INTRODUCTION

At the very core of quantum thermodynamics — which
has recently seen a surge in interest from the quantum
information community [1–3]— lies the task of extract-
ing work from quantum systems. Ideally, this is achieved
by reversible cyclic processes that can be represented by
unitary transformations, which, in turn, form the most
basic primitive of a cyclically operating engine. How-
ever, from so-called passive states [4] no work can be
extracted unitarily if only a single copy of the system
is available. Viewing quantum thermodynamics as a re-
source theory of work extraction [5, 6], it is therefore
tempting to view passive states as being freely available.
Curiously, most passive states still contain extractable
work, that can only be accessed by processing multiple
copies using entangling operations [7]. This has sparked
interested in the role of entanglement in work extrac-
tion [8] and more generally in the structure of passive
states [9]. States from which no energy can be extracted
unitarily, no matter how many copies are available, are
called completely passive, and without further conserved
charges the unique completely passive state is the so-
called thermal state. Naturally, the extraction of work
from non-passive quantum states using arbitrary uni-
taries has therefore been the subject of many fruitful
investigations (see, e.g., Refs. [10–13]). This has pro-
vided useful insights into the role of coherence, correla-
tions, and entanglement for work extraction [14–17], and
conversely, about the work cost for establishing correla-
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tions [18–20] and coherence [21].

However, the unitary operations that extract the max-
imal amount of work from a given non-passive state may
be difficult to realize in practice. For example, the global
entangling unitaries required to extract work from pas-
sive but not completely passive states are not feasible un-
der realistic conditions, which already leads to a discrep-
ancy between theoretically extractable work and what
is practically achievable. Consequently, the character-
ization of states as non-completely passive may fail to
accurately represent how useful a quantum system is for
thermodynamical work extraction in practice. It is hence
of interest to study the ergotropy [10], i.e., the maxi-
mal amount of work that can be unitarily extracted in
a Hamiltonian process, under the restriction to practi-
cally realizable transformations. An important example
of such a constraint in continuous variable systems is the
class of Gaussian unitary operations, which, although be-
ing standard operations in quantum optical systems (see,
e.g., Refs. [22, 23]), represents a significant restriction of
the set of all possible transformations. This manifests,
amongst other things, in the fact that Gaussian opera-
tions are not universal for quantum computation [24].

It is the aim of this paper to investigate this interest-
ing dichotomy between what is possible in principle and
what is practically feasible within quantum thermody-
namics, focusing on Gaussian unitary transformations.
We provide a full characterization of Gaussian passivity
for multi-mode states, i.e., we give necessary and suffi-
cient conditions to identify all (not necessarily Gaussian)
quantum states from which no work can be extracted
using Gaussian transformations. This characterization
only requires knowledge of the first and second statisti-
cal moments of the state in question, independently of
whether the state itself is Gaussian or not, and imme-
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diately provides a protocol for optimal Gaussian work
extraction given any number of modes. Finally, we show
that the gap between passivity and Gaussian passivity
can be maximal if only the first and second moments of
the state are known. That is, we show that the first and
second moments of any Gaussian-passive state (which
need not be a Gaussian state, and hence is not to be
confused with a passive Gaussian state) are in principle
compatible with those of a state of maximal ergotropy,
even under entropy constraints.

To examine the usefulness of Gaussian transformations
in the context of thermodynamic work extraction, we
first review the notion of passivity in Section II. In Sec-
tion III we introduce the notion of Gaussian passivity
and formulate our main result, the characterization of all
Gaussian-passive states, before examining the ergotropic
gap in Section IV. In Section V we finally discuss the
consequences and applications of our results.

II. PASSIVE STATES

On an elementary level, controlled engines perform
their tasks based on repeated cycles, during which the
system dynamics are typically changed through an ex-
ternal control. The resulting time evolution of the sys-
tem is hence governed by a time-dependent Hamilto-
nian H(t). At the end of each cycle of duration τ
the system is returned to its initial Hamiltonian, i.e.,
H(nτ) = H(0) ≡ H0 for any integer n, leading to unitary
dynamics perturbed only by the necessary interactions
with the environment. In this sense the unitary orbits
of the input quantum states determine the fundamen-
tal limits of operation of cyclic machines, which is one
of the reasons that unitary work extraction has recently
attracted attention [7–9, 17, 25, 26].

Within this paradigm, the elementary processes that
we consider here can in principle generate work if the av-
erage energy of a given system can be reduced by unitary
operations. That is, if for a system with Hilbert space H
described by a density operator ρ ∈ L(H) there exists a
unitary operator U ∈ L(H), such that

Ẽ = Tr
(
H0UρU

†) < Tr
(
H0ρ

)
= E . (1)

States for which the average energy cannot be reduced by
unitaries are called passive. All passive states ρpass are
diagonal in the eigenbasis {|n〉} of H0 with probability
weights decreasing (not necessarily strictly) with increas-
ing energy [4], that is, passive states ρpass can be written
as

ρpass =

d−1∑

n=0

pn |n〉〈n| , (2)

where pn ≤ pm when En ≥ Em, and d = dim(H), and,
as usual, 0 ≤ pn ≤ 1 and

∑
n pn = 1, while the energy

eigenstates satisfy

H0 |n〉 = En |n〉 . (3)

To see this, simply consider a two-dimensional subspace
spanned by |m〉 and |n〉 with Em < En. To decrease the
average energy using a unitary on this subspace, the cor-
responding probability weights must satisfy pm < pn.
Any state for which this isn’t the case for any two-
dimensional subspace is passive, and is of the form of
Eq. (2).

An example for a passive state in continuous variable
systems is a product state of two thermal states of two
bosonic modes at the same frequency ω and tempera-
ture T = 1/β (in units where ~ = kB = 1). A bosonic
mode is represented by annihilation and creation opera-
tors a and a†, satisfying [a , a† ] = 1, and a Hamiltonian
H0 = ω a†a. The operator a annihilates the vacuum
state, i.e., a |0〉 = 0, and the eigenstates of the Hamil-
tonian, the Fock states, are obtained by applying the
creation operators |n〉 = (a†)n/

√
n! |0〉. A thermal state

τ(β) of temperature T = 1/β is given by

τ(β) =
e−βH0

Z , (4)

where Z = Tr(e−βH0) is the partition function. In the
Fock basis the thermal state reads

τ(β) = (1− e−βω)
∑

n

e−nβω |n〉〈n| . (5)

Since thermal states are the only completely passive
states, any resource state for a cyclic engine must be out
of thermal equilibrium. The most elementary engine is
hence a heat engine, which only needs access to two ther-
mal baths at different temperatures. This is arguably the
simplest out-of-equilibrium resource: Given two thermal
baths at equal temperature, increasing the temperature
of one of them can be achieved by increasing the energy
of one of the systems without requiring any knowledge of
its microstates.

At this point, it seems prudent to restate the above ob-
servation about these elementary heat engines in a more
technical manner by reminding the reader of the elemen-
tary fact that, for two bosonic modes at the same fre-
quency, the product state of two thermal states with dif-
ferent temperatures is not passive. Since we will refer to
it later in the manuscript, it is instructive to examine one
potential strategy to prove this statement. Consider two
bosonic modes at the same frequency ω, with tempera-
tures Ta and Tb > Ta, respectively. The product state of
the two thermal states is

τ(Ta, Tb) = (1− e−ω/Ta)(1− e−ω/Tb)

×
∑

m,n

e
−ω( mTa

+
n
Tb

) |m〉〈m| ⊗ |n〉〈n| . (6)
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Up to a common prefactor, the matrix elements are

e
−ω( mTa

+
n
Tb

)
= e

− ω
TaTb

(mTb+nTa) . (7)

The state is not passive if there exist pairs of non-negative
integers m, n and m′, n′, such that

mTb + nTa > m′ Tb + n′ Ta , (8)

while m′ + n′ > m + n . Now consider, e.g., the case
where m = n = x/2, while m′ = 0 and n′ = x + 1
for some even non-negative integer x. In this case, the
second inequality is trivially true for all x and the first
condition is

x(Ta + Tb)/2 > (x + 1)Ta , (9)

which implies x > 2Ta/(Tb − Ta) > 0. So by picking x
large enough, one can always find a two-dimensional sub-
space, in which a unitary can reduce the average energy,
proving that the state τ(Ta, Tb) of Eq. (6) is not passive.

However, practically realizing these unitaries on arbi-
trary (two-dimensional) subspaces of the overall Hilbert
space may prove to be practically unachievable. There-
fore, it is of interest to investigate the limitations of
work extraction by operations that can be feasibly im-
plemented.

III. GAUSSIAN-PASSIVE STATES

While the fact that τ(Ta, Tb) of Eq. (6) is not passive in
principle allows the construction of a heat engine the nec-
essary unitaries to extract energy may be difficult to real-
ize in practice. A set of operations that are in general eas-
ier to implement are Gaussian unitaries, which are gen-
erated by Hamiltonians that are at most quadratic in the
mode operators, and transform Gaussian states to Gaus-
sian states. These, in turn, are states whose characteris-
tic Wigner function is Gaussian (see, e.g., Ref. [23] for a
detailed review). Such states are fully described by their
first and second statistical moments, that is, the expec-
tation values of linear and quadratic combinations of the
quadrature operators Xi, where X2n−1 =

(
an + a†n

)
/
√

2

and X2n = −i
(
an − a†n

)
/
√

2, and n = 1, 2, . . . , N labels
the N modes of the system in question. The second mo-
ments are collected in the real, symmetric, and positive
definite 2N × 2N covariance matrix Γ, with components

Γij = 〈 XiXj +XjXi 〉 − 2 〈 Xi 〉 〈 Xj 〉 , (10)

where 〈A 〉 = Tr(Aρ) is the expectation value of the op-
erator A in the state ρ. For example, the thermal state
of a single bosonic mode that we have encountered in
Eq. (5) belongs to the class of Gaussian states and is of
particular interest for us here. Its first moments van-
ish, 〈Xi 〉 = 0, while the covariance matrix is given by
Γthermal = coth

(
βω/2

)
1.

Gaussian unitaries are described by affine maps (S, ξ) :

X 7→ SX+ ξ, where ξ ∈ R2N represent phase space dis-
placements, and S are real, symplectic matrices. By defi-
nition, a symplectic operation S leaves invariant the sym-
plectic form Ω with components Ωmn = i [Xm ,Xn ] =
δm,n−1 − δn,m+1, i.e.,

S ΩST = Ω . (11)

Displacements, represented by the unitary Weyl opera-
tors D(ξ) = exp

(
i
√

2XTΩξ
)
, do not affect the covariance

matrix but rather shift the first moments. While all of the
mentioned transformations preserve the Gaussian charac-
ter of Gaussian states, one can of course also consider the
effects of Gaussian transformations on any arbitrary state
via the effect on the corresponding covariance matrix and
vector of first moments. We are now interested in deter-
mining for which (not necessarily Gaussian) states of two
noninteracting bosonic modes with frequencies ωa and ωb
(w.l.o.g. we assume ωb ≥ ωa), energy can be extracted
using only Gaussian operations. In analogy to the previ-
ous terminology we call states Gaussian-passive if their
average energy cannot be reduced by Gaussian unitaries.
The first important step in analyzing this property is the
ability to identify Gaussian-passive states, which is es-
tablished by the following theorem.

Theorem 1. Any (not necessarily Gaussian) state of
two noninteracting bosonic modes with frequencies ωa
and ωb ≥ ωa is Gaussian-passive if and only if its first
moments vanish, 〈 X 〉 = 0, and its covariance matrix Γ
is either

(i) in Williamson normal form [27]

Γ = diag{νa, νa, νb, νb}

with νa ≥ νb for ωa < ωb. Or, in the case of equal
frequencies ωa = ωb, the state may also be

(ii) in standard form [28, 29]

Γ =

(
a1 C
C b1

)

with C = c1, if ωa = ωb.

Proof. To prove Theorem 1, we will proceed in the fol-
lowing way. We will start with the most general combi-
nation of first moments 〈 X 〉 and second moments Γ that
any initial state may have, before successively applying
Gaussian operations (steps P1-P4) to reduce the average
energy. When we reach a state whose energy cannot be
further reduced by Gaussian unitaries, we compare its en-
ergy to that of the initial state and identify under which
conditions the energy has been lowered with respect to
the initial state. These conditions will finally result in the
identification of the characteristics of Gaussian-passive
states as stated in clauses (i) and (ii) above.

(P1) Displacements: As we consider noninteracting
bosonic modes, the average energy of a two-mode
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state is given by the sum of the average energies of
the individual modes. For a single mode with fre-
quency ωa and ladder operators a and a†, a state
described by the density operator ρ has the average
energy E(ρ) = ωaTr(ρa†a), which can be written in
terms of the state’s covariance matrix Γa and vector
of first moments 〈 Xa 〉 as

E(ρ) = ωa

(1

4

[
Tr(Γa)− 2

]
+

1

4
||〈 Xa 〉||2

)
, (12)

where || · || is the (Euclidean) norm. Since dis-
placements change the first moments but leave the
second moments invariant, the energy of the state
can always be decreased by shifting 〈 Xa 〉 to the
null vector. Conversely, every state with nonvan-
ishing first moments cannot be Gaussian-passive,
since its energy can be lowered by appropriate dis-
placements. From here on we may hence consider
only states for which the energy has been reduced
by displacements as much as possible, such that for
each mode one has 〈 Xa 〉 = 0. In the following, one
may then apply Gaussian unitaries represented by
symplectic transformations S, which leave the zero
first moments invariant.

(P2) Local symplectic operations: In the next step,
we note that every two-mode covariance matrix Γ
can be brought to the standard form Γst [28, 29]
by local symplectic operations Sloc = Sloc,a⊕Sloc,b,
that is,

Sloc ΓSTloc = Γst =

(
a1 C
C b1

)
, (13)

where C = diag{c1, c2}. Each of the single-mode
symplectic operations Sloc,i (i = a, b) can be decom-
posed into phase rotations and single-mode squeez-
ing as

Sloc,i = R(θi)S(ri)R(φi) . (14)

For some real angles θi and φi, and real squeezing
parameters ri, these local operations take the form

R(θi) =

(
cos θi sin θi
− sin θi cos θi

)
, S(ri) =

(
e−ri 0

0 eri

)
.

(15)

Conversely, this means that we can write the co-
variance matrix Γ as

Γ = (S−1loc ) Γst (S−1loc )T , (16)

where the inverse operations are also local sym-
plectic transformations S−1loc = S−1loc,a ⊕ S−1loc,b. The

single-mode inverses S−1loc,i are simply

S−1loc,i = R(−φi)S(−ri)R(−θi) . (17)

This allows us to express the energy of the state
described by the covariance matrix Γ as

E(Γ) =
ωa
2

(
a cosh(2ra)− 1

)
+
ωb
2

(
b cosh(2rb)− 1

)
.

(18)

Since cosh(2ri) ≥ 1, it becomes clear that the en-
ergy of a state with covariance matrix Γ can be low-
ered by local symplectic operations until Γ reaches
the standard form. Consequently, states for which
Γ 6= Γst are not Gaussian-passive, whereas states
with covariance matrices in the standard form may
still have energy that can be reduced by global sym-
plectic transformations.

(P3) Two-mode squeezing: After using local Gaussian
operations to extract as much energy as possible,
one is hence left with a state whose covariance ma-
trix is in the standard form of Eq. (13). The lo-
cal covariance matrices of each mode are then pro-
portional to the identity, a1 and b1, but the off-
diagonal block C may have two different diagonal
elements c1 and c2. If this is the case, we can apply
a two-mode squeezing operation to reduce the en-
ergy and bring the covariance matrix to a form in
which the off-diagonal block is proportional to the
identity as well. The symplectic representation of
this global transformation is

STMS =

(
cosh(r)1 sinh(r)σz
sinh(r)σz cosh(r)1

)
, (19)

where σz = diag{1,−1} is the usual Pauli matrix
and the squeezing parameter r that achieves equal
off-diagonal elements is given by

r = − 1
2 artanh

(c1 − c2
a+ b

)
. (20)

To show that this transformation always reduces
the average energy, we compute the energy E(Γ̃) as-
sociated to the two-mode squeezed covariance ma-
trix Γ̃ = STMSΓstS

T
TMS and find

E(Γ̃) =
ωa
2

[
a cosh2(r) + b sinh2(r)

]

+
ωb
2

[
b cosh2(r) + a sinh2(r)

]

+
ωa + ωb

4

[
(c1 − c2) sinh(2r)− 1

]
. (21)

We then take the derivative with respect to r and
set ∂E(Γ̃)/∂r = 0, which provides the condition

(a+ b) sinh(2r) + (c1 − c2) cosh(2r) = 0 , (22)

which in turn is solved by r from Eq. (20). It is
then easy to check that for this value of r we have
∂2E(Γ̃)/∂r2 > 0, indicating that the energy is min-
imal for the specified value of the squeezing param-
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eter. The two-mode squeezing transformation with
this strength hence reduces the energy. While the
off-diagonal block of the covariance matrix is pro-
portional to the identity after this operation, the
local covariance matrices are generally not of this
form, albeit still being diagonal. We can then use
local rotations R(ϑ, ϕ) = R(ϑ)⊕R(ϕ), which leave
the energy invariant, to bring the covariance ma-
trix back to the standard form where every 2 × 2
subblock is now proportional to the identity, i.e.,

Γ̂ = R(ϑ, ϕ) Γ̃RT(ϑ, ϕ) =

(
ã1 c1

c1 b̃1

)
. (23)

In some circumstances, the third step of the proto-
col can be seen as the conversion of Gaussian en-
tanglement into work. Note that the previous two
steps consist of local unitaries, and hence leave any
entanglement measure invariant. If the initial state

is a Gaussian state, the form of Γ̂ in Eq. (23) further
indicates that no more entanglement is present af-
ter step P3, since a nonnegative determinant of the
2 × 2 off-diagonal block is a sufficient separability
criterion for two-mode Gaussian states [29]. For any
Gaussian state, the presence of entanglement hence
indicates that the energy can be lowered by Gaus-
sian unitaries in the third step. However, the fact
that the energy of a Gaussian state can be lowered
in step P3, does not imply that the initial state is
entangled [19]. Moreover, if the initial state is not
Gaussian, the final state after step P3 may still be
entangled in general.

(P4) Beam splitting: Having reached a state with a co-
variance matrix as in Eq. (23), we have exhausted
all local Gaussian operations as well as two-mode
squeezing to lower the energy. In particular, at this
point we know that applying any local or global
squeezing transformation can only increase the en-
ergy. This leaves only the beam splitting transfor-
mation as a last Gaussian unitary that we still have
at our disposal. This transformation, represented
by the global orthogonal symplectic matrix

SBS(θ) =

(
cos(θ)1 sin(θ)1
sin(θ)1 − cos(θ)1

)
(24)

for real values of θ, is an optically passive trans-
formation. That is, it leaves the average excitation
number unchanged. If the frequencies of the two
modes are the same, ωa = ωb, then such a trans-
formation obviously also leaves the average energy
unchanged. In this case, the energy of the state
cannot be further lowered by any Gaussian unitary
and we conclude that the state is hence Gaussian-
passive, which proves clause (ii) of Theorem 1.

If the frequencies are not the same we may assume
w.l.o.g. that ωa < ωb. Then, the energy can be low-
ered by shifting as many excitations as possible to

the lower frequency mode. To prove this rigorously,
we compute the average energy of

ΓGP = SBS(θ) Γ̂STBS(θ) , (25)

for which we find

E(ΓGP) =
ωa
2

[
a cos2(θ) + b sin2(θ) + c sin(2θ)− 1

]

+
ωb
2

[
b cos2(θ) + a sin2(θ)− sin(2θ)− 1

]
. (26)

Similarly as for the two-mode squeezing we then set
∂E(ΓGP)∂θ = 0 and find that the energy is mini-
mized when

θ =

{
1
2 arctan( 2c

a−b ) if a ≥ b
1
2 arctan( 2c

a−b ) + π
2 if a < b

. (27)

The resulting covariance matrix ΓGP =
diag{νa, νa, νb, νb} is in Williamson normal
form [27], its eigenvalues coincide with its sym-
plectic eigenvalues, and the lower frequency mode
now has the higher population, νa ≥ νb. Any
further Gaussian unitary applied to this final state
would bring the covariance matrix (and/or the
first moments) to a form that would allow reducing
the energy via one (or several) of the steps P1-P4.
The corresponding symplectic operations leave the
symplectic eigenvalues invariant. Consequently,
the second moments of the initial state uniquely de-
termine the associated Gaussian-passive covariance
matrix ΓGP. That is, ΓGP is the only covariance
matrix with symplectic spectrum {νa, νa, νb, νb}
whose energy cannot be lowered by Gaussian uni-
taries. (If ωa = ωb, the Gaussian-passive covariance
matrix is not unique, but is determined only up
to arbitrary optically passive transformations.)
We therefore arrive at the conclusion that the
state associated to the covariance matrix ΓGP is
Gaussian-passive. Any state whose covariance
matrix is not of this form can be subjected to one
(or several) of the steps P1-P4 to reduce its average
energy, and is hence not Gaussian-passive, which
concludes the proof.

Note that for any given initial state (which need not
be Gaussian), the corresponding Gaussian-passive state
is not unique, because the operations P1-P4 do not com-
mute. For instance, applying the operations of step P1
after any of the other steps leads to different final states
that have the same first and second moments, and hence
the same final energy. The symplectic eigenvalues of
the initial state hence uniquely define the lowest energy
that can be reached via Gaussian unitaries, but several
(non-Gaussian) states (equivalent up to energy conserv-
ing Gaussian unitaries) may be compatible with the cor-
responding Gaussian-passive covariance matrix.

A corollary that follows immediately from Theorem 1
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concerns the extension to an arbitrary number of modes.

Corollary 1. An arbitrary state of n bosonic modes
is Gaussian-passive if and only if all of its two-mode
marginals are Gaussian-passive.

Proof. To prove this statement, simply note that all
Gaussian unitaries can be decomposed into sequences of
operations on one or two modes. Consequently, if a state
admits no two-mode marginal whose energy can be low-
ered by Gaussian unitaries, then the overall state must
be Gaussian-passive.

An interesting example for a Gaussian-passive state of
two modes with different frequencies is that of a product
of single-mode thermal states, in which each mode has a
different temperature. In this case the symplectic eigen-
values are νi = coth( ωi

2Ti
) and for Tb 6= 0 the condition

νa > νb for Gaussian passivity can be expressed as

ωa
ωb

<
Ta
Tb

. (28)

Now, recall from Section II that we know that within
the framework of general operations the product states
of two thermal states at different temperatures is not pas-
sive, regardless of the frequencies of the modes involved.
However, as we have seen, such a state may nonetheless
be Gaussian-passive depending on the relation between
the local temperatures and frequencies.

Here, a word of caution is in order. Since (Gaus-

sian) unitaries leave the purity Tr(ρ2) = 1/
√

det(Γ) un-
changed, one may be tempted to (falsely) conclude that
the existence of (Gaussian) states that have the same pu-
rity as a given Gaussian-passive state but a lower average
energy means that one may further reduce the energy of
Gaussian-passive states beyond what is stated in Theo-
rem 1. For example, for νaνb < ωb/ωa the Gaussian state
with covariance matrix

Γ′ =

(
νaνb 1 0

0 1

)
, (29)

has the same purity as the Gaussian-passive state spec-
ified in clause (i). However, such states cannot be
reached by Gaussian unitaries if their symplectic eigen-
values (νaνb and 1 in the example) do not match those
of the original state. In general, there may not even
exist a non-Gaussian unitary (even if it preservers the
Gaussian character of the specific state in question) that
transforms the corresponding states into each other. Fi-
nally, note that all passive states are obviously Gaussian-
passive, but the converse is not true.

IV. THE GAP BETWEEN PASSIVITY AND
GAUSSIAN PASSIVITY

Given the characterization of a given state as Gaussian-
passive, it is now natural to ask how much extractable

energy is potentially sacrificed by the restriction to Gaus-
sian unitary orbits, rather than general unitary transfor-
mations. Suppose that one only has knowledge of and
access to the first and second moments of an arbitrary
state of two bosonic modes. With this information, which
can practically be easily obtained in several ways (see,
e.g., Ref. [30]), one may use Gaussian unitaries to lower
the energy of the state until reaching a Gaussian-passive
state. One may then wonder how much more energy
could have been extracted if general unitary operations
could be applied. The answer to this question of course
depends on the particular state in question. So far, we
have only fixed the first and second moments, which iden-
tifies states uniquely only if they are Gaussian. It is hence
crucial to understand which (non-Gaussian) states are in
general compatible with a given set of first and second
moments. A first important observation can be phrased
in the following lemma.

Lemma 1. The first and second moments of any
Gaussian-passive state are compatible with a (non-
Gaussian) pure state for which the entire energy is ex-
tractable by unitary transformations.

Proof. To prove the lemma first note that any Gaussian-
passive state of an arbitrary number of modes with
different frequencies (clause (i) of Theorem 1) has a
locally thermal covariance matrix with different effective
temperatures for each mode. In this case it is therefore
enough to consider a single mode in a thermal state
with arbitrary temperature, and show that there exists
a pure state with the same first and second moments.
If such a pure state exists for a single mode for any
temperature, then one can certainly find pairs of
states of this kind whose tensor product is compatible
with a Gaussian-passive, locally thermal two-mode state.

In the case that the covariance matrix has nonzero
off-diagonal blocks, i.e., if clause (ii) of Theorem 1
applies, the covariance matrix can be brought to the
locally thermal form by an energy conserving, Gaussian
unitary, that is, a beam splitting transformation with
angle θ given by Eq. (27). Then, as before, one is
required to find a pure state that matches the resulting
locally thermal covariance matrix. Applying the inverse
of the beam splitting operation to this state, one finally
obtains a pure two-mode state compatible also for
Gaussian-passive states with non-diagonal covariance
matrices.

To identify the pure states in question, recall that
the first moments of a Gaussian-passive state must van-
ish. This is also the case for all Fock states |n〉 =

(a†)n/
√
n! |0〉. Indeed, this is even true for all superpo-

sitions of Fock states that differ by two or more excita-
tions, for instance, all states of the form

∑
k ck |n+mk〉

for any n,m ∈ N0 and m ≥ 2. Restricting to this family
of states we are interested in identifying those members
that also have the second moments of a thermal state.
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This is achieved by considering states that are super-
positions of Fock states that differ by three (or more)
excitations (m ≥ 3), for instance,

√
p |n〉+

√
1−p |n+ 3〉

for 0 ≤ p ≤ 1. For such a state the covariance ma-
trix takes the form of a thermal state Γ = ν1, where
ν =

(
2pn+ 2(1−p)(n+3)+1

)
. By selecting the discrete

value n ∈ N0 and the continuous parameter p appropri-
ately, the second moments of this state can be chosen to
match those of the desired Gaussian-passive state. The
thus constructed state ρ is clearly pure, and its (non-
equilibrium) free energy F (ρ) = E(ρ) − T S(ρ), where
S(ρ) = −Tr

[
ρ ln(ρ)

]
is the von Neumann entropy, is

hence identical to its average energy E(ρ). The latter
can of course be lowered to zero by a (non-Gaussian)
unitary by rotating the pure state towards the vacuum
state.

As we have seen in Lemma 1, if only the first and
second moments of a state are known and the state is
Gaussian-passive, in principle all (or none) of the state’s
energy may be extractable. In other words the gap be-
tween the free energy, i.e., the energy extractable by gen-
eral unitary transformations, and the energy that can
be extracted using only Gaussian unitaries is maximal.
However, for such a maximal gap both the initial and fi-
nal state must be pure, since we are applying only (Gaus-
sian) unitary transformations, which leave the spectrum
(and hence the entropy) unchanged. As most machines
operate at an ambient temperature that is above zero
and the second law implies that it is highly unlikely for
any state to fall below the entropy of the corresponding
thermal state, a maximal gap in the above sense may not
occur in practice.

It is therefore reasonable to assume that, in addition
to the first and second moments, also a lower bound on
the entropy of the state is known. Given some nonzero
entropy S(ρ) = −Tr

[
ρ ln(ρ)

]
, the average energy of the

state is bounded from below and may not be lowered ar-
bitrarily1. In such a case, it is of interest to ask whether
the free energy gap is still maximal. That is, we ask:
Does every Gaussian-passive state with entropy2 S0 ad-
mit a state ρ that has the same entropy, S(ρ) = S0,
and the same first and second moments 〈 X 〉 = 0 and
Γ, but whose energy E(ρ) [which is determined by 〈 X 〉
and Γ via Eq. (12)] may be lowered to the minimal value
E0 that is compatible with S0 using (arbitrary) unitary
transformations?

Theorem 2. The first and second moments of any
Gaussian-passive state with entropy S0 are compatible
with a (non-Gaussian) state of the same entropy for

1 We implicitly assume that the spectrum of the Hamiltonian is
bounded from below, i.e., a ground state exists.

2 Note that the entropy is not determined by the second moments
alone, since the Gaussian-passive state need not be a Gaussian
state.

which the maximal amount of energy (the energy differ-
ence to the thermal state of entropy S0) is extractable by
unitary transformations.

Proof. For a Gaussian-passive state with fixed first and
second moments (〈 X 〉 = 0 and Γ), the energy is also
fixed, see Eq. (12). In addition, we assume that the
entropy of the initial (Gaussian-passive) state is S0.
Clearly, any previous Gaussian unitaries or possible gen-
eral unitary transformations on the closed system that
are yet to be carried out must leave this entropy invari-
ant. On the other hand, the state ρ that minimizes the
energy E(ρ) at a fixed entropy S0 is the thermal state
of Eq. (4). Since we cannot change the spectrum using
unitary transformations, we hence have to show that for
every Gaussian-passive state at entropy S0 there exists
a state ρ that has the same spectrum as a thermal state
of entropy S0, but whose first and second moments (and
hence its energy) match those of the Gaussian-passive
state.

The strategy to show that this is possible is to start
from the thermal state and manipulate it using unitary
transformations to reach the desired first and second mo-
ments. In this way the spectrum of the state is preserved.
In particular, we know that the spectrum is also invariant
under the possible application of an energy-conserving
beam splitting operation in the case that the covari-
ance matrix of the Gaussian-passive state is not diagonal
(clause (ii) of Theorem 1). Consequently, we can again
focus on proving the statement of Theorem 2 for single-
mode Gaussian-passive states with thermal covariance
matrices, as we have argued in the proof of Lemma 1.
For each of these local single-mode covariance matrices
the diagonal elements are identical and linear functions
of the energy, see Eq. (12). The first moments as well
as the off-diagonals of the covariance matrix of both the
thermal state and the initial state vanish. We therefore
restrict to rotations in subspaces of Fock states that differ
by three (or more) excitations to keep it that way.

We now just have to show that this method allows
increasing the energy of the thermal state to reach the
energy of any single-mode Gaussian-passive state, which
also fixes the desired nonzero second moments. For any
specified energy this can be achieved by continuously ro-
tating in the subspace spanned by the states |0〉 and |n〉
for some sufficiently large n ≥ 3. Since the thermal
state is (i) diagonal in the Fock basis, (ii) the eigenval-
ues are strictly decreasing with increasing n, and (iii)
the Hilbert space is infinite-dimensional, one may reach
arbitrarily large energies at a fixed entropy. Finally, be-
cause a Gaussian-passive state with the same first and
second moments (and therefore same energy), and with
the same entropy S0 as the Gaussian-passive initial state
can be reached unitarily from the minimal energy ther-
mal state, the converse must also be true.

It is quite remarkable to note that the proof of The-
orem 2 makes use of the infinite-dimensionality of the
Hilbert space, which is reminiscent of the famous Hilbert
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hotel paradox (see, e.g., Ref. [31, p. 17]). The fact that
the Hilbert space is infinite-dimensional is crucial to give
the necessary freedom to be able to unitarily increase the
energy of any thermal state to arbitrary values without
introducing nonzero first moments or off-diagonal second
moments. In any finite dimension this is not possible. In
practice, one may encounter systems that are effectively
finite-dimensional, which would place limitations on the
applicability of Theorem 2. This could lead to a potential
reduction of the ergotropy gap.

Nonetheless, it is interesting to observe that the infinite
dimensions of the Hilbert space may even allow extending
the statement of Theorem 2 to cases where more than
the first two statistical moments of the Gaussian-passive
state are known. For instance, suppose an expectation
value of a cubic combination of mode operators such as
〈 a3 〉 was known. In this example, one could rotate in a
subspace spanned by two Fock states separated by three
excitations (e.g., |k〉 and |k + 3〉 for some appropriate
value of k) to arrange for the desired expectation value
without changing the lower order moments, energy, or
entropy.

V. CONCLUSION

In this article, we have investigated the funda-
mental thermodynamic problem of work extraction
from continuous-variable quantum systems under the
restriction to Gaussian unitaries. These operations
can typically be easily implemented in quantum optics
experiments, whereas the general unitary transforma-
tions that may be required to extract work from a
given non-passive state may be extremely challenging
to realize. To capture the limitations of this restricted
class of operations for the task at hand we have in-
troduced the notion of Gaussian passivity. We have
given necessary and sufficient criteria for identifying
Gaussian-passive states (whose energy may not be
reduced by Gaussian unitaries) based on the first and
second statistical moments of an arbitrary number of
modes. Furthermore, we have shown that although
the first two statistical moments provide complete
information about the Gaussian ergotropy (the maximal
amount of energy extractable in a Gaussian unitary
process), the gap to the non-Gaussian ergotropy may

always be maximal if the state is not fully known, even
under entropy constraints.

This trade-off between usefulness and severe limita-
tion of Gaussian operations comes as no surprise and
is a recurring feature in continuous-variable quantum
information. For instance, Gaussian operations are
known not to be universal for computational tasks [24].
Similar properties have also been described in a quantum
thermodynamical framework of converting work and
correlations. There it was found that, while Gaussian
operations provide optimal scaling for the creation of
entanglement using large input energies, they cannot
create entanglement with finite energy at arbitrary
temperatures [19, 32].

While uncovering and quantifying the restrictiveness of
Gaussian operations in the thermodynamic context, our
results also provide practical strategies for the implemen-
tation of quantum heat engines based on Gaussian oper-
ations in quantum optical architectures. In particular,
the steps P1-P4 of the proof of Theorem 1 can be viewed
as a set of instructions for Gaussian work extraction.
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One of the most fundamental tasks in quan-
tum thermodynamics is extracting energy
from one system and subsequently storing this
energy in an appropriate battery. Both of
these steps, work extraction and charging, can
be viewed as cyclic Hamiltonian processes act-
ing on individual quantum systems. Inter-
estingly, so-called passive states exist, whose
energy cannot be lowered by unitary opera-
tions, but it is safe to assume that the energy
of any not fully charged battery may be in-
creased unitarily. However, unitaries raising
the average energy by the same amount may
differ in qualities such as their precision, fluc-
tuations, and charging power. Moreover, some
unitaries may be extremely difficult to realize
in practice. It is hence of crucial importance
to understand the qualities that can be ex-
pected from practically implementable trans-
formations. Here, we consider the limitations
on charging batteries when restricting to the
feasibly realizable family of Gaussian unitaries.
We derive optimal protocols for general uni-
tary operations as well as for the restriction to
easier implementable Gaussian unitaries. We
find that practical Gaussian battery charging,
while performing significantly less well than is
possible in principle, still offers asymptotically
vanishing relative charge variances and fluctu-
ations.

1 Introduction
Quantum thermodynamics (QT) deals with the ma-
nipulation and transfer of energy and entropy at the
quantum scale. How well one can transfer energy de-
pends greatly on the information one has about a
system [1, 2, 3]. Consequently, the system entropy
quantifying this information is rendered an impor-
tant quantity for achievable state transformations [4].
At �xed energy, the entropy is maximized for ther-
mal states, which allows for the de�nition of thermal

Nicolai Friis: nicolai.friis@univie.ac.at
Marcus Huber: marcus.huber@univie.ac.at

equilibrium characterized by the emergent notion of
temperature. A system in such a thermal equilib-
rium with an environment at temperature T is ther-
modynamically useless in the sense that its energy
cannot be extracted as work [5, 6]. Therefore, much
e�ort has been invested into understanding the emer-
gence of equilibration and thermalization in quan-
tum systems [7]. At the same time, quantifying ex-
tractable energy and identifying achievable transfor-
mations crucially depends on the control one assumes
to have about microscopic degrees of freedom. For
instance, acting only upon individual quantum sys-
tems from whom work is to be extracted gives rise
to the notion of passive states [8] which cannot yield
any work in cyclic Hamiltonian processes, even if the
entropy at a given energy is far below the thermal
entropy [9]. However, even non-passive states may
still require complex operations and precise control
over large Hilbert spaces that make them practically
unfeasible sources of work. A recent focus of ther-
modynamic resource theories has thus been to inves-
tigate the role of precise control and practically im-
plementable operations for achieving desired work ex-
traction [10, 11, 12, 13] and refrigeration [14].

The resource-theoretic view on quantum thermo-
dynamics of course extends beyond the task of work
extraction, and generally aims to identify the ulti-
mate limitations of all single-shot processes [5, 15, 16].
More speci�cally, viewing quantum thermodynamics
as a resource theory entails either the ability to per-
form any unitary operation induced by a Hamilto-
nian H(t) with control parameter t (i.e., the case of
�driven" or controlled operations), or applying arbi-
trary �thermal operations", i.e., global energy con-
serving operations on the chosen system and arbitrary
many auxiliary systems. When these auxiliary sys-
tems can feature coherence w.r.t. the energy eigen-
basis (i.e., if coherent �batteries" are provided), these
paradigms become equivalent [17, 18]. However, nei-
ther paradigm limits the complexity of the allowed
operations, requiring arbitrary coherent energy shifts
in subsystems from which energy is extracted or in
which energy is stored [19, 20]. This can lead to gen-
uine quantum advantages, e.g., for the charging power
of N -qubit batteries [21, 22] and for small, �nite-
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dimensional systems (e.g., few-qubit registers) such
full control over the quantum systems may reason-
ably be expected. However, for larger systems such as
registers of many qubits, arbitrary global operations
may be di�cult to realize and call for more special-
ized practical solutions [23]. In particular, this applies
to in�nite-dimensional quantum systems such as (en-
sembles of) harmonic oscillators. Besides the paradig-
matic two-dimensional Hilbert spaces of qubits of-
ten favoured in information-theoretic approaches to
quantum mechanics, harmonic oscillators play a cru-
cial role for the description of physical systems in
quantum optics and quantum �eld theory. Indeed,
all current realistic proposals for and implementa-
tions of quantum machines involve at least one Hilbert
space corresponding to a harmonic oscillator. Ex-
amples for such systems include superconducting res-
onators [24, 25], modes of the electromagnetic �eld
in a cavity [26], or vibrational modes of trapped
ions [27, 28]. It is hence of conceptual signi�cance to
understand the fundamental as well as the practical
limitations for thermodynamic tasks in such in�nite-
dimensional continuous-variable (CV) systems. In
particular, full control over such systems automati-
cally implies the ability to create coherence between
energy levels with arbitrarily large separation.

In contrast, a class of operations that can typically
be realized comparatively simply in quantum optical
realizations of CV systems is that of Gaussian uni-
taries [29]. In the context of driven quantum systems
these operations naturally appear as most straight-
forwardly implementable in the hierarchy of driving
Hamiltonians since they require H(t) to be at most
quadratic in the system's creation and annihilation
operators. Indeed, most natural interactions are ap-
propriately described by such �bipartite terms" (usu-
ally resonant energy exchanges), whereas the creation
of higher order terms is a challenge that is usually
addressed only in a perturbative way. For the task of
work extraction, the restriction of thermodynamic op-
erations on CV systems to Gaussian transformations
brings about the notion of Gaussian passivity [10],
which encompasses states that are potentially non-
passive, but are passive w.r.t. Gaussian transforma-
tions. Once work has been extracted, one would of
course also like to put it to use, potentially at a later
time. This requires the previously obtained energy
to be stored and distributed. It is hence expected
that practical limitations applying to work extraction
�in particular, the restriction to Gaussian operations
�will also be relevant for these tasks.

Following the full characterization of Gaussian pas-
sivity [10], we hence aim to quantify the limitations
imposed by the restriction to Gaussian unitaries on
the task of energy transfer to suitable quantum op-
tical storage devices, i.e., charging batteries. More
precisely, we consider ensembles of harmonic oscil-
lators as batteries. These batteries are assumed to

ΔW

ΔE
Wm→ n

Em

U, ΔE V

EE

ΔE

En

Figure 1: Quantum battery charging: The average energy
of an initially thermal battery is unitarily increased by ∆E.
The fluctuations of the final charge and of the energy supply
can be quantified by the variance V of the energy distribu-
tion in the final battery, and by the average square deviation
(∆W )2 of the transitions Wm→n = Em − En between the
levels m and n from the average energy supply ∆E.

be initially uncharged in the sense that they contain
no extractable work. That is, we consider the empty
batteries to be in thermal equilibrium with the en-
vironment, and describe them by thermal states at
the ambient temperature. We then study the task
of unitarily increasing their energy by a �xed incre-
ment ∆E. Although such unitaries always exist in
in�nite-dimensional Hilbert spaces, unitaries achiev-
ing a given energy increase are not uniquely deter-
mined by ∆E, and may o�er di�erent charging preci-
sion, speed, and energy �uctuations during the charg-
ing process.

Here, we focus on two quantities characterizing the
reliability of the charging process, as illustrated in
Fig. 1. First, the charging precision, represented by
the energy variance V of the battery, which is of in-
terest since it is desirable that a charged battery is
able to deliver the expected energy, not hazardously
much more energy or disappointingly much less. Sec-
ond, we consider the �uctuations during the charg-
ing process, captured by (∆W )2 the average square
deviation of the energy transitions from the average
energy supply. While the variance quanti�es the use-
fulness of the battery in terms of potential �uctua-
tions occurring when discharging the loaded battery,
the variance loosely speaking only captures half of the
problem. That is, taking into account the initial dis-
tribution of energies one may also be interested in
the energy �uctuations during the charging process.
The resulting distribution is often called ��uctuating
work" [30, 31, 32] and characterizes the distribution
of work if one were to measure the battery in the
energy eigenbasis at the beginning and end of the
charging protocol. For both of these characteristics
we determine the ultimate limitations during arbi-
trary unitary charging processes by designing optimal
protocols. We then specialize to Gaussian unitaries,
for which we identify the optimal and worst charging
protocols. In comparison, we �nd that Gaussian uni-
taries perform signi�cantly less well than is possible
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in principle. Nonetheless, Gaussian battery charging
can asymptotically achieve vanishing relative �uctua-
tions V/∆E and (∆W )2/∆E for large input energies
by way of simple combinations of displacements and
single-mode squeezing. Our results hence provide in-
sights into both the fundamental and practical limi-
tations of charging quantum optical batteries.
This article is structured as follows. In Sec. 2, we

set the stage for the investigation and de�ne the quan-
tities of interest. We then present an investigation of
the fundamental limitation of charging quantum bat-
teries using arbitrary unitaries in Sec. 3, before we re-
strict to Gaussian transformations in Sec. 4. Finally,
we draw conclusions in Sec. 5.

2 Charging a quantum battery
As battery systems to be charged we consider a
number of bosonic modes (i.e., an ensemble of har-
monic oscillators) initially in thermal states τ(β) =
exp(−βH)/Z, where Z = Tr

(
exp(−βH)

)
is the par-

tition function, β = 1/T is the inverse temperature of
the battery (we use units where ~ = kB = 1 through-
out), and H =

∑
j ωja

†
jaj is the system Hamiltonian.

The mode operators aj and a
†
j satisfy the usual com-

mutation relations [aj , a†k ] = δjk and [aj , ak ] = 0.
For such a non-interacting Hamiltonian, the initial
state is a product state τ(β) =

⊗
i τi(β). The single-

mode Gibbs states τi(β) can be written as

τi(β) = (1− e−βωi)
∑

n

e−nβωi |ni 〉〈ni | (1)

with respect to their respective Fock bases {|ni 〉},
where ai |ni 〉 = √

ni | (n− 1)i 〉 and a†i |ni 〉 =√
(n+ 1)i | (n+ 1)i 〉. This choice of initial state en-

sures that the batteries are truly empty at �rst, i.e.,
the initial state is passive for any number of such bat-
teries because the Gibbs state is completely passive
(uniquely at �xed energy).
We are then interested in applying a unitary trans-

formation U to raise the average energy by ∆E,
transforming the initial state τ(β) to a �nal state
ρ = UτU†, i.e.,

∆E = E(ρ)− E
(
τ(β)

)
= Tr

(
H[ρ− τ(β)]

)

= Tr(Hρ)−
∑

n

ωn
eβωn − 1 . (2)

We quantify the charging precision via the increase
of the standard deviation of the system Hamiltonian,
that is, one of the quantities that we are interested in
is

∆σ =
√
V (ρ)−

√
V (τ), (3)

where the variance w.r.t. H is given by

V (ρ) =
(
∆H(ρ)

)2 = Tr(H2ρ)−
(
Tr(Hρ)

)2
. (4)

Besides the precision of the �nal battery charge, one
may also care about other quantities, for instance, the
energy �uctuations1 of the charging process. That is,
we consider the average squared deviation from the
average energy increase, given by

(∆W )2 =
∑

m,n

pm→n(Wm→n −∆E)2 , (5)

where Wm→n = En − Em is the work relating the
m-th and n-th energy levels, with H |n 〉 = En |n 〉,
and

pm→n = pm | 〈n |U |m 〉 |2 (6)

is the probability of a transition from the m-th to
the n-th energy eigenstate starting from the initial
state τ(β) with diagonal elements pn = 〈n | τ |n 〉. To
better understand the quantity ∆W it is useful to
note that we can write the squared work �uctuation
as the variance of the operator H∆ = H̃ − H in the
thermal state, where H̃ = U†HU , i.e.,

(∆W )2 = 〈H2
∆ 〉τ − 〈H∆ 〉2τ

= (∆H̃τ )2 + (∆Hτ )2-2 Cov(H̃,H) , (7)

where the covariance is given by

Cov(H̃,H) = 1
2 〈 {H̃,H}+ 〉 − 〈 H̃ 〉 〈H 〉 , (8)

and {H̃,H}+ = H̃H + HH̃ denotes the anticommu-
tator. In general, the operators H̃ and H need not
commute, but since the initial thermal state is diago-
nal in the energy eigenbasis, we can further simplify
Eq. (7) and obtain

(∆W )2 = V (ρ) + V (τ)− 2
[
Tr(H̃Hτ)− E(τ)E(ρ)

]
.

(9)

The squared increase of the standard deviation, in
comparison, can be written as

(∆σ)2 = V (ρ) + V (τ)− 2
√
V (ρ)V (τ) . (10)

Since one can write E(τ)E(ρ) = Tr(U†HU 〈H 〉τ τ),
it is easy to see the charging precision and �uctuations
coincide when the initial state is an eigenstate of the
Hamiltonian, because 〈H 〉τ τ = En |n 〉〈n | = Hτ and
V (τ) = 0. In this case (which, in our scenario only
occurs for the ground state since our initial state is a
thermal state), one has (∆W )2 = (∆σ)2 = V (ρ).

3 Fundamental Limits for Battery
Charging
In this section, we investigate the fundamental lim-
its on the charging precision and �uctuations. As

1Note that we use a definition for energy fluctuations suit-
able for the task at hand, which differs from fluctuations in the
sense of thermodynamical fluctuation relations [33].
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we shall see, optimal protocols can be constructed
that minimize either the variance of the �nal energy
or the �uctuations during the charging process, but
these do not coincide for �nite temperatures. How-
ever, the involved operations are often rather com-
plicated in the sense that they require very speci�c
interventions in particular subspaces of the in�nite-
dimensional Hilbert space, tailored to the initial tem-
perature and energy supply. The results obtained in
this section hence illustrate what is in principle pos-
sible and provide a benchmark for the precision and
�uctuations achievable with Gaussian unitaries.

3.A Fundamental limits for zero temperature
Let us �rst consider a simple example to set the stage
for a further, in-depth investigation. To this end, we
consider a single-mode battery that is initially in the
ground state, i.e., H = ωa†a and τ = |0 〉〈0 |. In
this case, the work �uctuations and charging precision
coincide and are given by

(∆σ)2 = (∆W )2 = (∆H(ρ))2, (11)

and ρ = U |0 〉〈0 |U† = |ψ 〉〈ψ | is a pure state. Since
the Hilbert space in question is in�nite-dimensional
the energy variance of the �nal state is not bounded
from above. This can be seen by choosing a super-
position of the form |ψ 〉 = √q |0 〉 +

√
1− q |k 〉 with

k = (1− q)−1∆ε, such that
〈H〉ψ
ω = ∆E

ω ≡ ∆ε. A
simple calculation then reveals that

(∆σ
ω

)2 = ∆ε(k −∆ε). (12)

In other words, for any chosen energy ∆E one can
make k (and hence ∆σ = ∆W ) arbitrarily large by si-
multaneously choosing q su�ciently close to 1. So for
arbitrarily small energies, the energy variance and the
�uctuations during the charging process may increase
by an arbitrary amount. However, it is also clear that
this is an artefact of the in�nite-dimensional charac-
ter of the system. If the dimension d of the system is
�nite (or there is some cuto� energy), then the max-
imal variance is obtained for a superposition of the
eigenstates |0 〉 and |d− 1 〉, with minimal and maxi-
mal eigenvalues, respectively, resulting in

(∆σmax,d)2

ω2 = ∆ε
(
(d− 1)−∆ε

)
. (13)

The minimal achievable variance for any given energy
is obtained by unitarily rotating to a superposition of
the two energy eigenstates |n 〉 and |n+ 1 〉 that are
closest to the available energy, i.e., such that n ≤
∆ε ≤ n+1. More speci�cally, we have |ψ 〉 = U |0 〉 =√
p |n 〉+

√
1− p |n+ 1 〉 with

p = d∆εe − ∆ε , (14)

resulting, after some algebra, in a variance of
(∆σmin

ω

)2 =
(
∆ε− b∆εc

)(
d∆εe −∆ε

)
. (15)
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Figure 2: Unrestricted battery charging: The maximal and
minimal variances of the energy that are in principle possi-
ble for a battery that starts in its ground state and is be-
ing charged by ∆E are shown (in units of ω, with ~ = 1)
for a system of dimension d = 6. When the Hilbert space
is infinite-dimensional, the lower bound periodically repeats,
but the upper bound is no longer finite for any value of ∆E.
Since the initial temperature vanishes, the bounds shown also
apply to the charging fluctuation ∆W .

Crucially, ∆σmin = 0 whenever ∆E is an integer
multiple of the oscillator frequency, and the maximal
value of ∆σmin is ω

2 , as illustrated in Fig. 2.

3.B Fundamental precision limits for arbitrary
temperatures
Having understood the simple case of optimally charg-
ing a battery initially in the ground state, we now
want to move on to the case of thermal battery
states. On the one hand, the worst-case scenario im-
mediately carries over from the situation discussed
in the previous section. That is, in an in�nite-
dimensional system one may always �nd a unitary
transformation that increases the energy by an arbi-
trarily small amount, while increasing the variance
arbitrarily strongly. This can be seen by just noting
that the two-level rotation used to rotate between the
ground state and the level |k 〉 can also be applied to
thermal states. The only di�erence is that the corre-
sponding probability weights are now di�erent from
1 and 0 initially. In contrast, the upper bound for
the variance in a �nite-dimensional system is always
�nite.
The optimally achievable charging precision, on the

other hand, requires a more intricate analysis. The
task at hand is to specify the state of minimal energy
variance V (ρ) at a �xed average energy within the
unitary orbit of a thermal state at a given tempera-
ture. In general, we cannot give a closed expression
relating this minimal variance to the energy input and
the initial temperature. However, one may formu-
late a protocol that provides (one of) these minimal
variance states. Here, we will give a short, intuitive
description of this protocol, and provide a detailed
step-by-step account in Appendix A.1.
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Figure 3: Optimal precision charging of thermal battery:
The minimal variance V (ρ) (in units of ω2) and the optimal
standard deviation change ∆σ (in units of ω) that are in
principle achievable for charging a quantum battery at initial
temperature T = 0.1 to T = 1 (in steps of 0.1 and units of
ω, bottom to top in (a) and top to bottom in (b)) are plotted
against the energy input ∆E/ω in (a) and (b), respectively.

Let us now brie�y explain the working principle of
the optimal-precision charging protocol. First, recall
that the initial thermal state has a density operator
τ(β) that is diagonal in the energy eigenbasis with
probability weights pn decreasing with increasing en-
ergies En. The average energy E

(
τ(β)

)
is determined

by the initial temperature and we hence know the
target energy E(ρ) = E(τ) + ∆E for any energy in-
put. We can then naively apply two-level rotations
to reorder the probability weights on the diagonal
such that the largest weight p0 is shifted to the eigen-
state whose energy is closest to the target energy, the
second largest weight is shifted to the second-closest
eigenstate to E(ρ), and so on. This procedure results
in the unique state ρ̃(β) within the unitary orbit of
τ(β) whose average squared deviation Ṽ from the tar-
get energy is minimal.

Unfortunately, this state does not generally have
the desired target average energy, i.e., Ẽ = E(ρ̃) 6=
E(ρ). Consequently, the average squared devia-
tion from E(ρ) is generally not equal to the energy-
variance, Ṽ 6= V . Moreover, both the cases Ẽ > E
and Ẽ < E can occur and one therefore has to ad-
just the energy accordingly. This can be done by se-
quences of two-level rotations that change the energy

by ∆Ẽ and increase the average squared deviation
from E by ∆Ṽ . An ordering of these operations that
is optimal is obtained when performing them in the
order of increasing values of ∆Ṽ /|∆Ẽ|, starting with
the smallest, i.e., when the increase of Ṽ per unit en-
ergy change is as small as possible. One carries on
with this protocol until the desired target energy is
reached, in which case the �nal value of Ṽ becomes
the variance of the energy V . The resulting variances
for given energy input for a harmonic oscillator are
illustrated in Fig. 3. It can be seen that for higher
initial temperatures this optimal protocol can lead to
decreasing variances in the battery state. Also note
that the working principle of this optimal protocol is
unchanged if one considers a �nite-dimensional sys-
tem instead and di�erences only arise because of the
�nite maximal energy input at any given temperature.

3.C Fundamental precision limits for multi-
mode batteries
After obtaining the fundamental limits on the preci-
sion of charging a single-mode battery, it is of course
natural to ask which possibilities arise when several
such batteries are available. The worst case scenario
for multiple modes trivially translates from our previ-
ous analysis. Since the variance for any given energy
input is not bounded from above for single-mode bat-
teries, the same is also true for many modes.
To understand what can be achieved in the best

case for multiple batteries, let us �rst consider the
two-mode case, i.e., two batteries labelled A and B
that are initially in a thermal state τA ⊗ τB. We
are now interested in an increase of the average en-
ergy E(ρ) = Tr

(
ρH
)
w.r.t. E(τ), where the bipartite

Hamiltonian is H = HA + HB = ωAa
†
AaA + ωBa

†
BaB.

The energy variance is then given by

(∆H)2 = (∆HA)2 + (∆HB)2 + 2 Cov(HA, HB),
(16)

where the covariance of Eq. (8) for the local (and
hence commuting) operators HA and HB is

Cov(HA, HB) = 〈HA ⊗HB 〉 − 〈HA 〉 〈HB 〉 . (17)

For a local unitary charging protocol, i.e., where
U = UA⊗UB, the initial thermal states remain uncor-
related and the covariance vanishes. That is, the �nal
state ρAB is a product state ρAB = ρA ⊗ ρB. In such
a case not only the average energies but also the vari-
ances are additive. Inspection of Fig. 3 then shows
that having two or more batteries available can be
bene�cial even when they are charged independently.
For instance, when the supplied energy would lead to
a local maximum of the variance if all energy is stored
in one battery, it may be prudent to reduce the energy
supply to this battery to reach a (local) minimum in-
stead. The remnant energy can then be stored in a
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Figure 4: Precision improvement for two-mode batteries:
The charging precision in terms of the overall variance V (ρ)
(in units of ω2) is shown for a battery consisting of two modes
with equal frequencies ω for sample temperatures of T = 0.1
(red, bottom), T = 0.7 (purple, middle) to T = 1 (blue,
top) in units of ω. For each temperature, three curves are
shown corresponding to different local unitary charging pro-
tocols pertaining to different distribution of the overall energy
input ∆E into the energy increases ∆EA and ∆EB of the
two modes labelled A and B, respectively. The solid curves
indicate that all energy is stored in one of the modes only,
∆E1 = ∆E, ∆E2 = 0. Dotted lines correspond to equal
charging energies for both modes, ∆EA = ∆EB = ∆E/2,
and dashed lines represent optimally splitting the charge be-
tween both modes. For the sake of numerical optimization
we have chosen integer multiples of ω/20 as indivisible units
of energy charge, meaning optimality here means the optimal
choice of m,n ∈ N0 such that ∆EA = m ω

20 , ∆EB = n ω
20 ,

and (m+n) ω20 = ∆E. Note that for the lowest temperature
shown (T = 0.1), the solid and dashed lines are virtually
indistinguishable, meaning that there is no (distinguishable)
advantage in splitting the energy between the modes. How-
ever, such an advantage is clearly visible for higher tempera-
tures.

second battery. When the two modes have the same
frequency and the initial temperature is nonzero the
resulting overall variance is then smaller than or equal
to that of charging only one battery, as we can see
from Fig. 4. In short, the availability of several bat-
tery modes at potentially di�erent frequencies hence
provides a certain �exibility to reach local minima of
the variances of the individual batteries, but the exact
performance for a given set of battery modes requires
to be worked out on a case-by-case basis.
For unitaries that are not local and can correlate

the two batteries, the situation is even more involved
but in principle such unitaries may help to achieve
an even better performance. To see this, let us re-
turn to the optimal protocol of the last section. In
the �rst step of this protocol, the probability weights
of the initial thermal state are reordered to create
a distribution that is as narrow as possible around
the target energy. The resulting state is diagonal in
the energy eigenbasis. Since this is a product basis
w.r.t the tensor product structure of di�erent modes,
the state is still uncorrelated. However, in the sec-

ond step, where the energy of the distribution is ad-
justed to the target energy, two-level rotations with
optimal ratios ∆Ṽ /|∆Ẽ| may occur between states
|m,n 〉 and |m′, n′ 〉 with m 6= m′ and n 6= n′ and
hence correlate the systems. For batteries at di�erent
frequencies there can thus be an advantage in intro-
ducing (speci�c) correlations, whereas a situation as
just described can always be avoided for batteries with
equal frequencies. In the general case of arbitrary fre-
quencies it is interesting to note though, that the cre-
ation of correlations may be marginally helpful but is
not the key ingredient. This is in contrast to recent
results on the charging power, where the ability to
create quantum correlations, i.e., access to entangling
operations (albeit not necessarily the actual creation
of entanglement) can be extremely useful [21, 22].
To reach optimality it nonetheless remains to be

determined how the energy can be optimally split be-
tween the oscillators, or invested in correlations. Un-
fortunately, this is di�cult to answer in general, and is
even rather complicated for uncorrelated charging due
to the non-monotonic behaviour of the optimal single-
mode charging protocol illustrated in Fig. 3, which
is illustrated in Fig. 4. There, the speci�c optimal
splitting depends on the initial temperature, the spe-
ci�c energy input, and the (number and) frequencies
of the battery modes involved. The optimal perfor-
mance hence has to be determined on a case-by-case
basis. However, one can state quite generally that
the optimal �nal variance of the joint system is never
larger than the optimal variance when all the energy
is stored only in one of the modes. In other words,
having several battery modes available is never detri-
mental. Indeed, having more empty batteries at dif-
ferent frequencies at one's disposal can be considered
a nontrivial resource for precise charging.
Having discussed which charging precisions can be

achieved in principle, let us brie�y turn to the fun-
damental limitations arising for the charging �uctua-
tions.

3.D Fundamental fluctuation limits for arbi-
trary temperatures
To complete the investigation of the fundamental re-
strictions of charging a quantum battery, let us con-
sider a protocol that minimizes the �uctuations ∆W .
For simplicity, let us start with the case where the
input energy is exactly one unit, ∆ε = 1. Then
the in�nite-dimensional Hilbert space allows keep-
ing the �uctuations arbitrarily small. To achieve
this, we perform a unitary permutation operation
on the �rst N energy levels that shifts the weight
pn = (1 − e−βω)e−nβω from the level n to the level
n + 1 for n = 0, . . . , N − 1, while the last weight
pN is shifted to the ground state level. In the limit
N →∞, the energy is increased by ∆E = ω and since
〈m |U |n 〉 = δm,n+1, the �uctuations vanish.
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When the input energy is less than one unit, i.e.,
when 0 < ∆ε < 1, the �uctuations do not vanish,
but can be minimized in a simple way. Suppose that
we perform the same permutation as before, but start
shifting weights upwards at some �nite n = k rather
than at n = 0, such that a vanishingly small weight
is placed on the k-th level. The corresponding �nal
state energy (in units of ω) would be

ε̃ = ε0 + ∆̃ε =
k−1∑

n=0
n pn+

∞∑

n=k+1
n pn−1 =

∞∑

n=0
n pn+

∞∑

n=k
pn,

(18)

where ε0 =
∑∞
n=0 npn = E(τ)/ω. The increase w.r.t.

the initial state would hence be

∆̃ε =
∞∑

n=k
pn =

∞∑

n=k
(1− e−βω)e−nβω = e−kβω. (19)

Now, generally, (βω)−1 ln(1/∆ε) is not an integer and,
consequently, the energy shift upwards starting from
k = k̃ := d(βω)−1 ln(1/∆ε)e is not enough, ∆εI :=
e−k̃βω ≤ ∆ε. However, if we perform the shift from k̃
onwards nonetheless, the di�erence ∆εII = ∆ε −∆εI
can be obtained by continuously rotating between the
level k̃ − 1 and the (now e�ectively unoccupied) level
k̃, i.e., by a mapping

(pk̃−1, 0) 7→ (cos2θ pk̃−1, sin2θ pk̃−1). (20)

The corresponding rotation angle θ is given by

θ = arcsin
√

∆εII
pk̃−1

= arcsin

√
ek̃βω∆ε− 1
eβω − 1 . (21)

This protocol is optimal since each (�nite size) weight
is shifted by either 0 or 1 units of energy, i.e., the shifts
closest to ∆ε since 0 ≤ ∆ε ≤ 1. Explicitly, we can
calculate the corresponding �uctuations by splitting
the contributions for the di�erently shifted weights,
i.e.,

(∆W )2 = (∆W<k̃−2)2 + (∆Wk̃−1)2 + (∆W≥k̃)2.

(22)

For n = 0, . . . , k̃ − 2 we have pm→n = pmδmn and
Wm→n = 0 and hence (∆W<k̃−2)2 =

∑k̃−2
n=0 pn(∆ε)2.

For the level k̃ − 1 we have
(

∆Wk̃−1
ω

)2
= pk̃−1→k̃−1(∆ε)2 + pk̃−1→k̃(1−∆ε)2

= pk̃−1
(
(∆ε)2 + sin2θ [1− 2∆ε]

)
, (23)

where we have used (20). The remaining shifts from k̃
upwards give rise to (∆W≥k̃)2 =

∑∞
n=k̃ pn(1−∆ε)2 =

∆εI(1−∆ε)2. When summing up these contributions,
substituting sin2θ = ∆εII/pk̃−1 from Eq. (21), and
noting that ∆ε = ∆εI + ∆εII, we �nd

(∆Wmin
ω

)2 = ∆ε(1−∆ε) (24)

for 0 ≤ ∆ε ≤ 1. Finally, consider the case where
∆ε > 1. Then we perform the protocol just described,
but replace ∆ε with the di�erence ∆ε − b∆εc to the
lower integer value. The remaining energy is now an
integer multiple of ω and can be gained by shifting
the entire distribution upwards by b∆εc units, whilst
�lling the gaps with vanishing contributions from ar-
bitrarily high levels (as described for ∆ε = 1 at the
beginning of this section). Since the last integer shift
does not add any �uctuations, we arrive at the opti-
mal value

(∆Wmin
ω

)2 =
(
∆ε− b∆εc

)(
d∆εe −∆ε

)
. (25)

Note that this expression for the minimal �uctuations
at arbitrary temperatures coincides with the expres-
sion for the minimal variance (∆σmin/ω)2 achievable
at zero temperature, as given in Eq. (15) and illus-
trated (by the lower curve) in Fig. 3, but for �nite
temperatures the protocol minimizing the �uctuations
does not minimize the variance, and vice versa. As a
remark, note that in contrast to the optimal precision
protocol, the protocol for minimal �uctuations does
not translate directly to the �nite-dimensional case.
As for the case of the variance, let us now turn to

the case of several modes, starting with two. Here it
is �rst important to note that a second battery can
be added without increasing the �uctuations since for
local unitaries one �nds

(∆W )2[∆E] = (∆WA)2[∆EA] + (∆WB)2[∆EB],
(26)

where ∆E = ∆EA + ∆EB. Second, one may note
that the protocol described above can now achieve
vanishing �uctuations also for energies ∆E = mωA +
nωB for m,n ∈ N0, not just for integer multiples of
a single frequency. In addition, the optimization of
the energy splitting between the two modes can lead
to lower �uctuations as compared to only charging
one of the batteries also for energy values that lie in
between two choices of m and n. All of this can be
done using only local unitary charging. Correlating
unitaries again only play a minor role in the sense
that they may be employed in optimizing the second
part of the protocol, where the missing energy ∆εII is
added. The presence of multiple modes as batteries
to be charged can hence be considered to be helpful.
However, as before, the exact optimal protocols for

multiple modes depend on the respective frequencies,
temperatures, and on the input energy, and hence
require case-by-case analyses. It thus becomes ever
more clear that the operations to optimize either the
variance or �uctuations are generally complicated and
require extreme levels of control over the in�nite-
dimensional systems we consider here. It is hence of
great interest to turn to practical operations such as
Gaussian unitaries, and investigate their limitations
for realistic battery charging.
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4 Battery Charging Using Gaussian
Unitaries
4.A Preliminaries: Phase space and Gaussian
states
In the following, we want to study the restrictions
imposed on the battery charging scenario when only
Gaussian unitaries are used, i.e., unitary operations
that map Gaussian states to Gaussian states. To ex-
amine this class of states, note that any quantum state
ρ in the Hilbert space L2(RN , dx), i.e., the space of
square-integrable (with respect to the Lebesque mea-
sure dx) functions over RN , can be assigned aWigner

function W(x, p) given by

W(x, p) = 1
(2π)N

∫
dy e−ipy 〈x+ y

2 | ρ |x−
y
2 〉 ,

(27)

where x, y, p ∈ RN , with x = (x1, x2, . . . , xN )T and
p = (p1, p2, . . . , pN ) are appropriate position and mo-
mentum coordinates and x̂ = (x̂1, x̂2, . . . , x̂N )T and
p̂ = (p̂1, p̂2, . . . , p̂N )T are the corresponding position
and momentum operators, respectively. The eigen-
states |x 〉 and |p 〉 of these operators, respectively,
satisfy

x̂ |x 〉 = x |x 〉 , (28)

p̂ |p 〉 = p |p 〉 . (29)

It is convenient to collect x and p into a single phase
space coordinate ξ = (x1, p1, x2, p2, . . . , xN , pN )T ∈
R2N , and corresponding quadrature operators Xi,
where

X2n−1 = x̂n = 1√
2

(
an + a†n

)
, (30)

X2n = p̂n = −i√
2

(
an − a†n

)
. (31)

The commutation relation [am , a†n ] = δmn then im-
plies the canonical commutator [ x̂m , p̂n ] = iδmn, and
vice versa. For the Wigner function, the normaliza-
tion of the density operator translates to the condition

∫
dxdpW(x, p) =

∫
dξW(ξ) = 1 . (32)

Expectation values of Hilbert space operators Ĝ can
be computed from the Wigner function via

〈 Ĝ 〉ρ = Tr
(
Ĝρ
)

=
∫
dxdpW(x, p) g(x, p) , (33)

where the Wigner transform g(x, p) of the operator Ĝ
is given by

g(x, p) =
∫
dy eipy 〈x− y

2 | Ĝ |x+ y
2 〉 . (34)

With these basic de�nitions at hand, we can now re-
turn to Gaussian states and operations.

Gaussian states are de�ned as those states in H
whose Wigner function is a multivariate Gaussian,
i.e., of the form

W(ξ) = 1
πN
√

det(Γ)
exp
[
−(ξ −X)TΓ−1(ξ −X)

]
,

(35)

for some vector X ∈ R2N and a real, symmetric 2N ×
2N matrix Γ. These quantities are called the �rst and
second statistical moments of a quantum state, where
the vector of �rst moments is simply X = 〈X 〉ρ and
the components of the covariance matrix are given by

Γij = 〈XiXj +XjXi 〉 − 2 〈Xi 〉 〈Xj 〉 . (36)

Note that we have included a conventional factor of
2 in the de�nition of the covariance matrix w.r.t. the
actual covariances of the operators, compare, e.g.,
Eq. (17). Via Eq. (35) Gaussian states are hence fully
determined by X and Γ.
Gaussian unitaries, which map the set of Gaus-

sian states onto itself, are represented by a�ne maps
(S, ξ) : X 7→ SX+ξ. Here ξ ∈ R2N are displacements
in phase space represented by the unitary Weyl oper-
ators D(ξ) = exp

(
iXTΩξ

)
, which can shift the �rst

moments, but leave the covariance matrix unchanged.
The objects S are real, symplectic 2N × 2N matrices
which leave the symplectic form Ω invariant, i.e.,

S ΩST = Ω . (37)

The components of Ω are given by Ωmn =
i [Xm ,Xn ] = δm,n−1 − δn,m+1. For more infor-
mation on Gaussian operations and states see, e.g.,
Refs. [34, 29].

4.B Charging precision for single-mode Gaus-
sian unitaries
We now want to study the previous situation of pre-
cisely charging quantum batteries based on harmonic
oscillators under the restriction to Gaussian unitaries.
To this end, �rst note that any initial thermal state
τ(β) is Gaussian for all temperatures (for the usual
Hamiltonian H =

∑
n ωnN̂n with N̂n = a†nan). The

corresponding �rst moments vanish, X = 0 and the
covariance matrix is diagonal,

Γ
(
τ(β)

)
=

N⊕

n=1
Γn(β), (38)

where the single-mode covariance matrices are given
by Γn(β) = coth

(
βωn/2

)
12. In particular, when the

temperature is zero, we have the ground state with
Γvac = 1, and the corresponding Wigner function
W(x, p) = 1

π exp[−(x2 + p2)].
To determine the energy of any Gaussian state for

the Hamiltonian H =
∑
n ωna

†
nan we do not need to

use Eq. (33). Inspection of the �rst moments X(n) =
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(X2n−1,X2n)T = 〈 (x̂n, p̂n)T 〉 of each mode and local
covariances simply reveals2 that

E(ρ) =
N∑

n=1
ωn

(1
4
[
Tr(Γn)− 2

]
+ 1

2 ||X
(n)||2

)
.

(39)

However, to compute the variance V (ρ) we require
also the expectation value of H2. For our single-
mode example (for notational convenience we drop
the mode label n on all quantities from now on) we
have H = ωN̂ with N̂ = a†a. We hence need to �nd
the Wigner transform of N̂2. With some straightfor-
ward calculations which are shown in detail in Ap-
pendix A.2, one obtains the expression

N2(x, p) = 1
4
(
x2 + p2 − 1

)2 − 1
4 . (40)

With this, we can compute the expectation value
〈 N̂2 〉 for arbitrary single-mode Gaussian states in
terms of the corresponding �rst and second moments.
Since we are dealing with a mode-local operator, we
can use the single-mode version of Eq. (35) to do so,
i.e., using only the vector X ∈ R2 and the 2×2 covari-
ance matrix Γ. After some lengthy but straightfor-
ward algebra we �nd that for any single-mode Gaus-
sian state

〈 N̂2 〉 =
∫
dxdpW(x, p)N2(x, p)

=
(

1
4
[
Tr(Γ)− 2

]
+ 1

2 ||X||2
)2

+ 1
2X

TΓX + 1
8
[
Tr(Γ2)− 2

]
. (41)

Since the �rst term on the right-hand side of Eq. (41)
is just the squared expectation value of N̂ for a Gaus-
sian state [compare with Eq. (39)], we immediately
obtain the variance

(∆N̂)2 = 1
2X

TΓX + 1
8
[
Tr(Γ2)− 2

]
. (42)

With this knowledge at hand, we can now return to
our problem of raising the energy of a single-mode bat-
tery using Gaussian unitaries. For single-mode bat-
teries that are initially at a �nite temperature, the
initial energy and corresponding variance can be cal-
culated from Eqs. (39) and (42) by noting that the
corresponding �rst moments vanish, X = 0 and the
covariance matrix is Γ(β) = coth

(
βω/2

)
12. With this

we have

E
(
τ(β)

)
= ω

2
[
coth

(
βω
2
)
− 1
]
, (43)

V (τ) =
(
∆H(τ)

)2 = ω2

4
[
coth2(βω

2
)
− 1
]
. (44)

We can then apply Gaussian unitaries to these
states. For instance, we may consider single-mode
displacements to raise the energy of initial thermal

2Note that there is a typographical error in the prefactor of
||X(n)||2 in Ref. [10, Eq. (12)].

0 1 2 3 4
ΔE [ω]0

1

2

3

4

Δσmax/min [ω]

Gaussian minimum
general unitary minimum

displacements only

Gaussian maximum
(squeezing only)

Figure 5: Ground state battery charging: The maximal
and minimal variances of the energy that are possible using
Gaussian unitaries for a battery that has been charged by
∆E and starting in its ground state are shown (in units of
ω, with ~ = 1). For reference, the performance of pure
displacements and the lower bound for arbitrary unitaries are
also shown.

states. For vanishing temperature, the action of the
corresponding Weyl displacement operators D(ξ) on
the vacuum creates coherent states D(ξ) |0 〉 = |α 〉 =
e−|α|

2/2∑
j
αj√
j!
|j 〉, where ξ =

√
2(Re(α), Im(α))T ∈

R2 and α ∈ C. Since displacements do not alter the
covariance matrix, the latter remains that of a single-
mode thermal state, while the �rst moments are trans-
formed to Xi = ξi. We hence have

∆E
ω = 1

2 ||X||2 = |α|2 , (45a)

(∆N̂)2 = 1
2 coth(βω2 )||X||2 + V (τ)

ω2 . (45b)

For displaced thermal states we consequently �nd

∆σ
ω =

√
coth(βω2 )∆E

ω + V (τ)
ω2 −

√
V (τ)
ω2 , (46)

i.e., an asymptotic increase of the energy standard
deviation with the square-root of the energy increase.
As we shall see, pure displacements are neither opti-
mal (minimal ∆σ for given ∆E), nor the worst pos-
sible Gaussian operations for battery charging, but
nonetheless, make for an interesting comparison. This
is illustrated in Fig. 5, where we have also included
results for the optimal and worst operations, which
we shall derive next.

4.C Optimal and worst-case Gaussian charging
precision
Let us now investigate these best-case and worst-
case Gaussian operations. The action of an arbi-
trary local Gaussian unitary UG results in some (gen-
erally nonzero) �rst moments ξ = X(U

G
τU†G), while

Γ(β) is mapped to the covariance matrix Γ̃ of an
arbitrary single-mode Gaussian state with the same
mixedness via a local symplectic operation Sloc, i.e.,
Γ̃ = SlocΓSTloc. Any single-mode symplectic operation
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can be decomposed [35, 29] into (phase) rotations R
and single-mode squeezing transformations S(r) as

Sloc = R(θ)S(r)R(φ) , (47)

where θ, φ are real rotation angles, r ∈ R is the squeez-
ing parameter, and

R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
, S(r) =

(
e−r 0
0 er

)
.

(48)

With this, the transformed covariance matrix can be
written as

Γ̃ = coth
(
βω
2
)
R(θ)S(2r)R(θ)T , (49)

and the corresponding average energy of the state ρ =
U
G
τU†G evaluates to

E(ρ) = ω
2
[
coth

(
βω
2
)

cosh(2r)− 1 + ||ξ||2
]
. (50)

Combining this with Eq. (43), we then have the
energy input

∆E = E(ρ) − E(τ)

= ω
2
[
coth

(
βω
2
) (

cosh(2r)− 1
)

+ ||ξ||2
]
. (51)

For the variance of the energy of the �nal state we �rst
inspect the term ξT Γ̃ξ and note that for our intents
we can absorb the rotation R(θ) into the choice of the
�rst moments, since ||ξ||2 = ||RT (θ)ξ||2. We hence �nd

V (ρ) =
(
∆H(ρ)

)2 = ω2

4
[
coth2(βω

2
)

cosh(4r)− 1

+ 2 coth
(
βω
2
)
ξTS(2r)ξ

]
. (52)

We then proceed in the following way. First, we
note that ∆E is a function of r and ||ξ||2, whereas V (ρ)
depends on ξ only via the term ξTS(2r)ξ = ξ2

1e
−2r +

ξ2
2e

2r. Since e−2r ≤ e2r for r ≥ 0, the maximal and
minimal values of V (ρ) for �xed ∆E and T = 1/β
must be attained for combinations of r ≥ 0 and ξ
with ξ1 = 0 and ξ2 = 0, respectively. Conversely,
this means that the remaining quantities ξ 2

2 and ξ 2
1 in

Eq. (52) can be identi�ed with ||ξ||2, i.e., from Eq. (51)
we have

2∆E
ω − coth

(
βω
2
)(

cosh(2r)− 1
)

=
{
ξ 2
2 if V maximal,
ξ 2
1 if V minimal.

(53)

We can thus de�ne two functions V+(r) and V−(r),
given by

V±(r)
ω2 = 1

4
[
coth

(
βω
2
)2 cosh(4r)− 1

]
(54)

+ e±2r[∆E
ω − 1

2 coth
(
βω
2
)(

cosh(2r)− 1
)]
,

which correspond to the respective restrictions of the
�nal state variance V (ρ). Moreover, when the initial

temperature and input energy are �xed these func-
tions depend only on r, allowing one to straightfor-
wardly determine the maxima maxr V+(r) = maxr V
and minima minr V−(r) = minr V , respectively. As
we show in detail in Appendix A.3, for every �xed
∆E ≥ 0 and T ≥ 0, there exist unique values r± ≥ 0,
such that maxr V+(r) = V+(r+) = maxr V = V (r+)
and minr V−(r) = V−(r−) = minr V = V (r−).

IV.C.1 Worst-case Gaussian charging precision

In particular, we �nd (see Appendix A.3.I for details)
that for any temperature and energy input, the maxi-
mal values of ∆σ are obtained for ξ = 0, that is, when
all energy is transferred to the battery via single-mode
squeezing. In this case both ∆E and ∆σ are functions
of r only, and we can use Eq. (51)to relate the two
quantities directly. In other words, we �nd

r+ = 1
2 arcosh

(
2∆E
ω / coth(βω/2) + 1

)
. (55)

along with the maximal variance increase

∆σmax
ω =

√
2∆E
ω

(∆E
ω + coth(βω2 )

)
+ V (τ)

ω2 −
√

V (τ)
ω2 .

(56)

As we see, in this case the energy standard deviation
increases linearly with the energy input in the asymp-
totic regime (as ∆E →∞).

IV.C.2 Optimal Gaussian charging precision

While the worst-case Gaussian unitary transforma-
tion has thus been identi�ed as pure single-mode
squeezing, the Gaussian unitary transformation that
minimizes the variance of the energy can be identi�ed
as a combination of squeezing and displacement that
depends on the input energy and temperature, see
Appendix A.3.II. That is, in our conventions, the op-
timal performance is achieved for ξ2 = 0 and generally
nonzero values of ξ1 and r = r−, where the latter is
determined by the condition ∂V−/∂r|r=r− = 0, which
implies

∆E
ω = 1

2 coth(βω2 )
(
e2r− cosh(4r−)− 1

)
. (57)

Inserting Eq. (57) into V− from Eq. (54) then permits
us to write

V−(r−)
ω = 1

2coth2(βω2 )
[
e2r−sinh(2r−)+ 1

2
(
cosh(4r−)−1

)]
.

(58)

Although a closed expression for r−(∆E, β) cannot be
given, we show in Appendix A.3.II that r−(∆E, β) ≥ 0
exists and is unique and can thus easily be determined
numerically for any given ∆E and T = 1/β via the
implicit formula in Eq. (57). The value r− obtained in
this way can then be inserted into Eq. (58) to arrive
at the minimal variance. Results for the bounds on
∆σ for a initial thermal states are shown in Fig. 6 for
a range of temperatures and input energies.
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Figure 6: Gaussian vs. optimal precision charging: The
standard deviation change ∆σ (in units of ω) is shown as a
function of the input energy ∆E (in units of ω) for the worst-
case (squeezing only, upper group of curves) and optimal
(middle group of curves) single-mode Gaussian unitaries, as
compared with the corresponding optimal non-Gaussian val-
ues (lower group of curves) obtained via the optimal protocol
discussed in Section 3.B. Each group of curves corresponds
to temperatures T = 0 to 10 in steps of 1 (in units of ω).

Here it is interesting to note that, while the upper
bound is achieved for pure squeezing transformations,
the lower bound is a combination of squeezing and
displacements. In the optimal case, the energies ∆Esq
and ∆Ed invested into squeezing and displacement,
respectively, are expressed via the optimal squeezing
parameter r− as

∆Ed
ω = 1

2ξ
2
1 = 1

2 coth(βω2 )e4r− sinh(2r−) , (59)
∆Esq
ω = ∆E−∆Ed

ω = 1
2 coth(βω2 )

(
cosh(2r−)− 1

)
.

(60)

In the limit of large energy supplies, ∆E → ∞ (at
�xed temperature this implies r− → ∞), we hence
have ∆Ed

∆Esq
→ e4r− . That is, the energy invested into

squeezing grows much less strongly than that invested
into displacements.
Moreover, note that while pure displacement

asymptotically (i.e., for ∆E → ∞) leads to a lin-
ear scaling of the �nal variance with ∆E, that is,
V (ρ)/∆E → ω coth(βω2 ) as ∆E → ∞, see Eq. (46),
the optimal local strategy provides a more favourable
scaling behaviour even though most of the energy is
invested into displacement. More speci�cally, con-
sidering the relative variance V−/∆E by combining
Eqs. (57) and (58), and taking the limit ∆E → ∞
(corresponding to r− →∞), one �nds that V−/∆E →
0, i.e., the optimal variance scales sub-linearly with
the input energy.

4.D Charging precision for multi-mode Gaus-
sian unitaries
Let us now �nally turn to the case of bounding the
charging precision of a multi-mode battery under the

restriction to Gaussian unitaries. As we have dis-
cussed in Section 3.C, in a general optimal protocol
for the charging precision, correlations between the in-
dividual battery systems can be helpful in principle.
However, this appears to be the case only if one can
selectively rotate between speci�c energetically desir-
able levels. For Gaussian unitaries, such specialized
operations with, in a manner of speaking, surgical pre-
cision are out of the question. In particular, one may
view any multi-mode Gaussian operation as a com-
bination of local operations and beam splitting [35].
The latter may shift the average excitation numbers
between the modes but may do little more. Another
aspect of introducing correlations during the charging
process is that any energy stored in this way also has
to be extracted globally from the joint system if op-
timality is to be preserved. In other words, introduc-
ing correlations raises the e�ective local temperatures
(and hence the local entropies), reducing the local free
energy. In the spirit of restricting to practical oper-
ations, we shall hence consider only local Gaussian
operations from now on.
Nonetheless, it may sometimes be useful to split

the energy supply between di�erent modes in speci�c
ways, depending on the initial temperature and en-
ergy supply. To understand why it is useful, consider
the (non-optimal) case of charging two modes labelled
A and B (with frequencies ωA and ωB , respectively)
via pure displacements. For such local operations, no
correlations are introduced. If the energy is split in
such a way that for some real p ∈ [0, 1] the energy
p∆E is stored in the mode A and (1 − p)∆E in the
mode B, inspection of Eq. (46) reveals that the vari-
ance of the �nal state ρAB behaves as

V (ρAB) =
(
pνAωA+(1−p)νBωB

)
∆E+V (τA)+V (τB)

(61)

with νi = coth
(
βωi

2
)
for i = A,B. When the two

modes have the same frequencies, ωA = ωB, the
variance becomes independent of p, i.e., V (ρAB) =
νAωA∆E + 2V (τA) = νBωB∆E + 2V (τB), and it does
not matter how the energy is split. Otherwise, that
is, when ωA 6= ωB, it becomes bene�cial to store all
the energy in the lower frequency mode. Now, recall
that this is the case for pure displacements, which
are not optimal. The optimal strategy, in contrast,
provides an increase of the variance that is sub-linear
with the input energy. In this case it matters how the
energy is split for all frequency combinations. E.g.,
for ωA = ωB it becomes optimal to evenly divide the
energy between the two batteries. In general, the op-
timal energy per battery is determined by the number
and temperature of the batteries and their respective
frequencies.
The worst case local scenario is obtained when the

energy is used only for single-mode squeezing, where
the splitting of the energy between the modes again
depends on the speci�c situation. For instance, when
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the frequencies of both modes are the same, investing
the same energy in both batteries via squeezing will
lead to the largest variance. This is because the lo-
cal variances increase stronger than linearly with the
input energy for single-mode squeezing.

4.E Charging fluctuations for single-mode
Gaussian unitaries
At last, let us turn to the question of bounding the
possible �uctuations that may appear in Gaussian
battery charging. From Eq. (9) we already know
how to express the energies and variances of ρ and
τ in terms of the temperature and �nal �rst and sec-
ond moments. However, we still need to calculate
Tr(H̃Hτ) for arbitrary Gaussian unitaries, where we
restrict to local operations, as before. For a single
mode with frequency ω we may write the term in
question as

1
ω2 Tr(H̃Hτ) =

∑

n

pn n 〈n |U†a†aU |n 〉 . (62)

In principle, an arbitrary single-mode Gaussian uni-
tary UG may be decomposed into a combination of
single-mode squeezing operations, local rotations, and
displacements, none of which commute with each
other. In spite of this, for any unitary and any initial
state ρo we can �nd a single-mode Gaussian unitary
Ũ
G

= D(−ξ)U
G
such that the �rst moments of Ũ

G
ρoŨ

†
G

vanish. Conversely, this means that for the purpose
of calculating 〈n |U†a†aU |n 〉 we may assume that
U
G
may be written as U

G
= D(ξ)Ũ

G
, where D(ξ) is

a pure displacement and Ũ
G
leaves the origin of the

phase space invariant. Consequently, we can use the
Bloch-Messiah decomposition [35] to write ŨG as a
combination of single-mode squeezing US(r) and lo-
cal rotations R(θ), i.e.,

ŨG = R(θ)US(r)R(φ). (63)

Inserting into Eq. (62) we then �nd that the rotations
either act on the rotationally invariant Fock states
(the phases cancel), or can be absorbed into the di-
rection of the displacement (using the same symbol ξ
in a slight abuse of notation). We hence �nd

〈n |U†Ga†aUG |n 〉=〈n |US(r)†D(ξ)†a†aD(ξ)US(r) |n 〉 .

We then use the simple relations

US(r)†aUS(r) = cosh(r) a + sinh(r) a†, (64a)
D(ξ)†aD(ξ) = a + ξ√

2 (64b)

to obtain the desired matrix element

〈n |U†Ga†aUG |n 〉 = n cosh(2r) + sinh2(r) + 1
2 ||ξ||2.

(65)

We can then reinsert this result into Eq. (62) and
evaluate the sum over n. Further inserting into the

squared work �uctuations of Eq. (9), and combining
this with the expressions for the variances and average
energies from Eqs. (43), (44), and (51) we obtain

(∆W
ω

)2 = V (ρ)
ω2 + V (τ)

ω2 −2E(τ)
ω

(
1+E(τ)

ω cosh(2r)
)
,

(66)

where V (ρ) is given by Eq. (52). Here, we note that,
apart from V (ρ), no dependency on the displacement
ξ appears in Eq. (66). Consequently, we may ar-
gue as in Section 4.B, that for any given value of
r, the maximal and minimal function values (here of
(∆W/ω)2) for �xed initial temperature and �xed ∆E
are attained for combinations of (single-mode) squeez-
ing r ≥ 0 and displacements ξ with ξ1 = 0 and ξ2 = 0,
respectively. In other words, we are interested in de-
termining the maximum of ∆W+(r) and the minimum
of ∆W−(r), where
(

∆W±(r)
ω

)2
= V±(r)

ω2 + V (τ)
ω2 −2E(τ)

ω

(
1+E(τ)

ω cosh(2r)
)
,

(67)

and V±(r) is given by Eq. (54). As we show in de-
tail in Appendices A.3.III and A.3.IV, both extremal
values exist and are unique for any given initial tem-
perature T = 1/β and input energy ∆E ≥ 0. Once
again, the corresponding extremal squeezing param-
eters r̃± (which are in general di�erent from the op-
timal squeezing parameters r± for the charging preci-
sion) are only given implicitly, i.e., by the conditions
∂∆W±/∂r|r=r̃± = 0, which can be expressed as

∆E
ω = 1

2

[
coth(βω/2)

(
e∓2r̃± cosh(4r̃±)− 1

)
(68)

± (coth(βω/2)−1)2

coth(βω/2) e∓2r̃± sinh(2r̃±)
]
,

respectively. Nonetheless, r̃± and hence the exact op-
timal and worst single-mode Gaussian �uctuations
can easily be obtained numerically, which we have
done for some sample values shown in Fig. 7. Inter-
estingly, the additional terms appearing in Eq. (66)
besides the variances lead not only to a di�erent op-
timum in terms of the relative strengths of squeezing
and displacements, but also mean that the worst case
is now also attained for nonzero displacements. In
particular, we �nd that the energy ∆E±d invested into
displacement in the extremal cases is given by

∆E±d
ω = 1−e∓2r̃±

2
[ (coth(βω/2)−1)2

coth(βω/2) − coth(βω2 )e∓2r̃±
]
,

(69)

while the energy invested into squeezing is ∆E±sq =
∆E − ∆E±d . In the limit of large energy supplies,
i.e., ∆E → ∞ (corresponding to r̃± → ∞ at �xed
temperature), we have

lim
r̃+→∞

∆E+
d

ω = (coth(βω/2)− 1)2

4 coth(βω/2) = const., (70)
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Figure 7: Gaussian vs. optimal fluctuation charging: The
minimal (solid) and maximal (dashed) fluctuations ∆W (in
units of ω) achievable with Gaussian unitaries are shown for
charging quantum batteries initially at temperatures T =
0 (red) to T = 10 (blue) (in steps of 1) for given energy
input ∆E (in units of ω). The periodic purple curve at
the bottom indicates the minimal fluctuations that are in
principle achievable, as described in Section 3.D.

while ∆E+
sq → ∞. One thus �nds that the worst-

case Gaussian strategy invests almost all energy
into squeezing asymptotically. Conversely, for the
minimal �uctuations we have ∆E−d /∆E−sq → e−4r̃− as
r̃− →∞. In the limit of large input energies it is thus
optimal to invest almost all energy into displacement
to minimize the �uctuations.

The crucial feature to note is that the optimal
Gaussian strategy results in a sub-linear increase of
the �uctuations with the input energy. Similarly as
before for the Gaussian strategy optimizing the charg-
ing precision, we can consider the limit ∆E → ∞ of
the relative �uctuations ∆W 2

−/∆E. For the optimal
strategy, Eq. (68) tells us that this corresponds to the
limit r̃− → ∞, for which ∆W 2

−/∆E(r̃−) → 0, since
∆W 2

− and ∆E grow as e4r̃± and e6r̃± , respectively, in
this limit.
Finally, let us brie�y comment on the Gaussian

multi-mode scenario. Much like before for the charg-
ing precision, using Gaussian operations that generate
correlations seems to be practically irrelevant since
any energy stored in such global correlations could
not be accessed locally. Nonetheless it can again be
useful to split the energy in speci�c ways (depending
on the respective frequencies) between two (or more)
batteries, since the optimal protocol brings about a
sublinear increase of (∆W )2 with the input energy.

5 Conclusion
In this work, we have investigated fundamental and
practical limitations on the precision of charging
quantum batteries and on the work �uctuations oc-
curring during the charging process. The battery sys-
tems we consider are in�nite-dimensional bosonic sys-
tems, i.e., collections of harmonic oscillators, which

are paradigmatic in the theoretical description of
physical systems in quantum optics and quantum �eld
theory and are hence of high conceptual signi�cance.
We assume these systems to be initially thermalized at
the ambient temperature. That is, from the point of
view of a resource theory of extractable work, empty
batteries are considered to be for free, as no work can
be extracted from them. We �nd that, on the one
hand, neither the �uctuations nor the precision of the
charge for any �nite energy input are bounded from
above in principle when increasing the average energy
of such batteries. On the other hand, we are able
to provide lower bounds for both quantities, present-
ing the respective optimal protocols minimizing the
energy variance or �uctuations at given energies and
temperatures.

In general, these optimal protocols, though theo-
retically easily describable, are practically di�cult to
realize, since they require sequences of precise inter-
ventions in particular subspaces of the correspond-
ing in�nite-dimensional Hilbert spaces. Therefore, it
is interesting to understand which limitations apply
in scenarios where the energy storage is performed
using practically realizable transformation. A set of
operations that can usually be implemented compa-
rably simply in such systems is the family of Gaus-
sian unitaries. Here, we have determined the opti-
mal and worst-case Gaussian operations for charging
quantum batteries. We �nd that energy increase via
pure single-mode squeezing is the least favourable op-
eration if one wishes to obtain a precise charge for
single-mode batteries, whereas the optimal precision,
as well as the smallest and largest �uctuations within
the restricted set of Gaussian operations are obtained
for combinations of squeezing and displacements. For
multiple modes, the situation becomes more compli-
cated in principle, but it can be said that it is in
general useful to have access to multiple batteries,
and that correlations between them are not necessar-
ily detrimental, but also only helpful indirectly.

Overall, we conclude that while the optimal Gaus-
sian operations do not achieve results comparable
in quality with optimal non-Gaussian protocols, the
worst performance achieved with Gaussian opera-
tions still produces �nite variances and �uctuations,
whereas this is not guaranteed in general. In par-
ticular, the relative variance and relative �uctuations
w.r.t. the energy input asymptotically vanish for large
energy supply for the optimal Gaussian charging oper-
ations. Gaussian unitaries are hence nonetheless prac-
tically useful for battery charging. In a sense, Gaus-
sian operations hence represent a trade-o� between
performance versus reliability and practicality. This
is reminiscent of similar contrasts between usefulness
and severe limitations of Gaussian operations for tasks
in quantum information, e.g., the non-universality of
Gaussian operations for quantum computation [36].
Another observation of this kind can also be made in
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a di�erent quantum thermodynamical context, where
Gaussian operations achieve optimal scaling for the
entanglement creation for large energy inputs, but fail
to create entanglement in thermal states of �nite tem-
peratures when the energy input is too small [37, 38].
This work hence adds to recent e�orts [10] of un-

derstanding the usefulness of Gaussian operations for
quantum thermodynamical tasks, providing investiga-
tions of Gaussian unitary work extraction and energy
increase. Nonetheless, future work may expand on a
number of open questions. For instance, we have here
mostly focused on individual batteries since any work
stored in joint systems would also require joint extrac-
tion. In other words, the role of correlations for work
�uctuations and charging precision may be of inter-
est, in particular, in relation to recent results on the
work-cost of creating correlations [37, 39, 40, 41, 42].
In addition, it would also be of interest to consider the
consequences of restricting to Gaussian operations for
the charging speed (or charging power) as considered
in Ref. [21, 22]. Finally, we note that, while some
of the results presented here (e.g., the optimal pre-
cision charging protocol) directly translate to �nite-
dimensional systems, other aspects of this work are
applicable only to the in�nite-dimensional case. An
in-depth investigation of the fundamental and practi-
cal limitations of precision and �uctuations in charg-
ing �nite-dimensional systems, although certainly of
interest [23], goes beyond the scope of this paper.
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Appendix
A.1 Optimal precision charging protocol
In this appendix, we give a detailed description of a
unitary battery charging protocol that raises the av-
erage energy of an initial single-mode thermal state
whilst keeping the energy variance of the �nal state
minimal. The initial thermal state with density op-
erator τ(β) is diagonal in the energy basis. The
corresponding diagonal elements are the probability
weights pn = (1 − e−βω)e−nβω, which are decreasing
with increasing energies En = nω. The initial average
energy E

(
τ(β)

)
= εoω, where εo = e−βω(1− e−βω)−1

and the initial energy variance V
(
τ(β)

)
= ω2e−βω(1−

e−βω)−2 are determined by the initial temperature
T = 1/β. We are then interested in increasing the

average energy by an amount ∆E = ω∆ε to reach
a state ρ with E(ρ) = ωε = E(τ) + ∆E. In particu-
lar, we aim to achieve this increase unitarily, i.e., such
that ρ = UτU†. Moreover, we want to keep the en-
ergy variance of ρ minimal. In other words, we would
like to determine the (non-unique) minimal energy-
variance state ρ with given average energy ωε in the
unitary orbit of τ(β).
The protocol that we present here to obtain such

a state consists of two parts (I & II). Each of these
parts can be described as a series of (unitary) two-
level rotations, ensuring that the �nal state is within
the unitary orbit of the initial state. The two-level ro-
tations between pairs of energy levels are used to ap-
propriately shift and reorder the probability weights
pn of the initial state. As we shall explain, part I of
the protocol reaches the unique state ρ̃ in the unitary
orbit of τ(β) that minimizes the average squared dis-
tance to the target energy. The state ρ̃ is diagonal in
the energy eigenbasis, and arises from a permutation
of the weights pn that assigns positions with increas-
ing distance to the target energy to weights with de-
creasing size. However, the state obtained in this way
does not have the desired target energy, i.e., in gen-
eral E(ρ̃) 6= E(ρ). During part II of the protocol, this
deviation of the average energy is corrected in such
a way that the target energy is reached whilst only
minimally increasing the average squared distance to
it.

A.1.I Part I of the protocol
In part I, we �rst identify the energy level (labelled
k) that is closest to the desired target energy, i.e., we
de�ne

k =
{
bεc if ε− bεc < dεe − ε
dεe if ε− bεc ≥ dεe − ε

, (A.1)

where we distinguish between two cases, depending
on whether ε is closer to the energy level above or
below its value. The probability weights for the case
where k = bεc are illustrated in Fig. A.1 (a). Part I
of the protocol then consists of a reordering of the
weights pn such that the largest weight p0 is moved to
the energy level k, the second largest weight p1 to the
second closest level to ε, and so forth. After part I, the
density operator is still diagonal, but the probability
weights on the diagonal are now either given by

p̃n =





p2(k−n) for n = 0, . . . , k
p2(n−k)−1 for n = k + 1, . . . ,max{1, 2k}
pn for n ≥ max{2, 2k + 1}

,

(A.2)

if k = bεc, or, in case that k = dεe by

p̃n =





p2(k−n)−1 for n = 0, . . . , k − 1
p2(n−k) for n = k, . . . , 2k − 1
pn for n ≥ 2k

. (A.3)
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The resulting probability distribution, illustrated in
Fig. A.1 (b) for the case k = bεc, has an average
energy ε̃I =

∑
n p̃nn and its average squared distance

from the target ε is minimal, i.e., we have arrived at
the unique state ρ̃ in the unitary orbit of the initial
state τ that minimizes ṼI =

∑
n p̃n(n− ε)2. However,

as ε̃I in general does not match ε, which implies that
ṼI also is not equal to the energy variance, we are not
yet done. Interestingly, for both k = bεc and k = dεe
one may encounter combinations of T and ∆ε such
that ε̃I < ε or ε̃I > ε.

A.1.II Part II of the protocol

In part II of the protocol we hence have to appro-
priately adjust the average energy. This can again be
done by a sequence of two-level rotations. Each of this
transformations will bring the average energy closer to
ε, but since we start from a minimum of the average
squared deviation from ε, the value of the latter will
increase. We are hence interested in selecting the op-
timal sequence of these two-level rotations. To start,
consider a rotation between the levels m and n with
weights p̃m and p̃n by an angle θ. This corresponds
to the map

(p̃m, p̃n) 7→ (cos2θ p̃m + sin2θ p̃n, cos2θ p̃n + sin2θ p̃m),
(A.4)

and leads to a change in energy given by

∆ε̃ = sin2θ (p̃n − p̃m)(m− n). (A.5)

Meanwhile, the increase of the mean squared devia-
tion from ε can be written as

∆Ṽ = ω2 sin2θ (p̃n − p̃m)
(
(m− ε)2 − (n− ε)2).

(A.6)

Now, let us pick two such values on either side of ε, i.e.,
m = k− l and n = k+ l+ j, where l ∈ N0 determines
the distance from the level k, and j ∈ Z quanti�es
the di�erence in distances to k (or equivalently to ε)
between the levels m and n. More speci�cally, we
have

d(n, ε)− d(m, ε) = (n− ε)− (ε−m) = 2(k − ε) + j.
(A.7)

Moreover, this implies that the energy change from
Eq. (A.5) is given by

∆ε̃ = sin2θ (p̃n − p̃m)(2l + j). (A.8)

With this we further �nd that the changes of the en-
ergy and of Ṽ have the relation

1
ω2

∆Ṽ
∆ε̃ = 2(k − ε) + j. (A.9)

With this knowledge, we come to a more detailed
description of the protocol. First, we set ε̃ = ε̃I and
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Figure A.1: Optimal precision battery charging: The pro-
tocol for optimal precision battery charging is illustrated for
an initial thermal state of temperature T = 3 (in units of
ω). (a) The probability weights pn of the initial state de-
crease with increasing energy. The initial average energy εo
(we use the dimensionless variables here for simplicity) is to
be raised by ∆ε to a value ε, that is closer to the energy
level k = bεc = 4 rather than dεe = 5. (b) Part I: Af-
ter rearranging the probability weights to place the largest
weights closest to k, one obtains a distribution {p̃n} with
an average energy of ε̃I > ε. The numbers m = 0, . . . , 10
above the vertical lines at horizontal position n indicate that
the corresponding weight p̃n corresponds to the value of the
original weight pm. (c) Part II: Additional two-level rotations
adjust the energy to the target ε. The first two of these ro-
tations (corresponding to ϕ = 1 with j = 0 and l = 1, 2, see
Sec. A.1.II) have angles π

2 and hence completely exchange
the populations of the levels (m,n) = (3, 5) and (2, 6). The
third rotation between levels 1 and 7 requires only a smaller
angle 0 < θ < π

2 until reaching the target energy.

Accepted in Quantum 2018-04-18, click title to verify 15



Ṽ = ṼI, and we distinguish between the two situations
ε̃ < ε and ε̃ > ε. On the one hand, when ε̃ < ε, we need
to increase the energy, which means picking levels m
and n such that p̃m > p̃n and 2l + j > 0, whilst
choosing j as small as possible to minimize ∆Ṽ

∆ε̃ . On
the other hand, when ε̃ > ε, we need to decrease the
energy, suggesting that one should select levels m and
n such that p̃m < p̃n and 2l+ j > 0, whilst choosing j
as large as possible to minimize ∆Ṽ

∆ε̃ . When such levels
are chosen and the potential energy change exceeds
what is needed to reach the target, one appropriately
�xes the rotation angle θ such that ε̃+ ∆ε̃ = ε. If the
energy change achievable with a speci�c such rotation
is not su�cient to reach the target, one rotates by
θ = π

2 , updates ε̃, Ṽ , and {p̃n} and continues with the
next viable pair of levels minimizing ∆Ṽ

∆ε̃ . Inspection
of all cases then reveals that the (�rst phase) of part II
consists of k or k + 1 two-level rotations labelled by
l = lmin, . . . , k, where

lmin =
{

0 if k = bεc, ε̃ < ε

1 otherwise
, (A.10)

and for each of these rotations we choose

j =





+1 if k = bεc, ε̃ < ε

0 if k = bεc, ε̃ > ε

0 if k = dεe, ε̃ < ε

−1 if k = dεe, ε̃ > ε

. (A.11)

Since ∆Ṽ
∆ε̃ does not depend on l and the rotations all

commute (they pertain to di�erent subspaces), the
order of these operations within the �rst phase is ir-
relevant. However, not even all k (or k+ 1) rotations
may generally be enough to su�ciently adjust the av-
erage energy. Consequently, part II may consist of an
arbitrary number of phases labelled by ϕ = 1, 2, . . .,
where

(
j(ϕ), lmin(ϕ)

)
=





(ϕ,−dϕ2 e+ 1) if k = bεc, ε̃ < ε

(−ϕ+ 1, dϕ2 e) if k = bεc, ε̃ > ε

(ϕ−1,−bϕ2 c+1) if k = dεe, ε̃ < ε

(−ϕ, bϕ2 c+ 1) if k = dεe, ε̃ > ε

.

(A.12)

Let us now give a more compact description of
part II. After part I, set {p̃} as the initial distribu-
tion, and further set ε̃ = ε̃I, Ṽ = ṼI, and ϕ = 1. Then
perform the following steps:

(i) Set j = j(ϕ), and l = lmin(ϕ).

(ii) If ε̃ 6= ε and l ≤ k, set m = k − l, n = k + l + j,
∆ε̃ II

max = (p̃m − p̃n)(2l + j), and continue with
step (iii). If ε̃ 6= ε and l > k, increase ϕ by one,
i.e., ϕ 7→ ϕ+ 1 and start again with step (i). If
ε̃ = ε the protocol concludes.

(iii) If ε̃ < ε, then ∆ε̃ II
max > 0 and θl is set to the

value

θl =





π
2 if ε̃+ ∆ε̃ II

max < ε

arcsin
√

ε−ε̃
∆ε̃ II

max
if ε̃+ ∆ε̃ II

max ≥ ε
.

(A.13)

If ε̃ > ε, then ∆ε̃ II
max < 0 and θl is set to the

value

θl =





π
2 if ε̃+ ∆ε̃ II

max > ε

arcsin
√

ε−ε̃
∆ε̃ II

max
if ε̃+ ∆ε̃ II

max ≤ ε
.

(A.14)

Then continue with step (iv).

(iv) Perform the following updates:

p̃m 7→ cos2θl p̃m + sin2θl p̃n,

p̃n 7→ cos2θl p̃n + sin2θl p̃m,

ε̃ 7→ ε̃+ sin2θl ∆ε̃ II
max = ∆ε̃ II,

Ṽ 7→ Ṽ + ∆ε̃ II(2(k − ε) + j),

Finally, increase l by one and start over from
step (ii).

After the conclusion of part II, the target energy has
been reached, ε̃ = ε, and the average squared devia-
tion from ε hence becomes the energy variance. The
second part of the protocol is illustrated in Fig. A.1 (c)
and the variances resulting from the protocol for dif-
ferent temperatures and input energies are shown in
Fig. 3 of the main text.

A.2 Wigner representation of squared number
operator
We do this by using the formulas of Eqs. (33) and (35).
To this end, we start by rewriting N̂2 in terms of the
local position and momentum operators as

N̂2 = 1
4
(
x̂2 + p̂2 − 1

)2 (A.16)

= 1
4
(
x̂4 + p̂4 + x̂2 p̂2 + p̂2 x̂2 − 2(x̂2 + p̂2)− 1

)
.

We then insert term by term into Eq. (34) and calcu-
late

〈x− y
2 | f(x̂) |x+ y

2 〉
= 〈x− y

2 | f(x+ y
2 ) |x+ y

2 〉
= f(x+ y

2 ) 〈 x− y
2 | x+ y

2 〉
= f(x+ y

2 ) δ(y), (A.17)
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〈x− y
2 | f(p̂) |x+ y

2 〉

= 〈x− y
2 | f(p̂)

∫
dp′ |p′ 〉〈 p′ | x+ y

2 〉

=
∫
dp′ f(p′) 〈 x− y

2 | p′ 〉〈 p′ | x+ y
2 〉

= 1
2π

∫
dp′ f(p′) e−ip

′y, (A.18)

for functions f of the operators x̂ and p̂, where we
have used that

〈 x| x′ 〉 = 1
2π

∫
dp eip(x−x′) = δ(x− x′) , (A.19)

〈 x| p 〉 = 1
(2π)1/2 e

ipx . (A.20)

After some algebra we then �nd the phase space rep-
resentation of the operator N̂2 to be given by

N2(x, p) = 1
4
(
x2 + p2 − 1

)2

+ 1
16π

∫
dq̃dp̃q̃2p̃2ei(p−p̃)q̃. (A.21)

The second term on the right-hand side can be un-
derstood in the distributional sense. That is, de�ning
the distribution γ[g(p)] via the function γ(p) given by

γ(p) :=
∫
dq q2 e−2ipq (A.22)

one �nds that for any Schwartz function g(p) we have

γ[g(p)] =
∫
dpγ(p) g(p) = − π

4
∂2

∂p2 g(p)
∣∣∣
p=0

= − π
4 g
′′(0). (A.23)

Then note that the wave function ψ(x) = 〈 x|ψ 〉 of
every single-mode pure state |ψ 〉 can be expanded in
terms of the Hermite polynomials Hj(x) as

ψ(x) = 1
π1/4 e

−x2/2
∑

j

cj√
2jj!

Hj(x). (A.24)

with
∑
j |cj |2 = 1. Using Eq. (A.19) we can then write

the Wigner function for an arbitrary single-mode pure
state as

W(x, p) = 1
π3/2 e

−x2
∫
dy e−y

2−2ipy h(x, y) (A.25)

with the function

h(x, y) =
∑

j,k

cjc
∗
k√

2j+kj!k!
Hj(x+ y)H∗k(x− y).

Finally, we can compute the integral of W(x, p) with
the second term on the right-hand side of Eq. (A.21)

and �nd

1
16π

∫
dx dpW(x, p)

∫
dq̃ dp̃ q̃2p̃2ei(p−p̃)q̃

= 1
16π5/2

∫
dxe−x

2
∫
dye−y

2
h(x, y)

×
∫
dp̃p̃2

∫
dq̃q̃2e−ip̃q̃

∫
dpeip(q̃−2y)

= − 1
8π1/2

∫
dxe−x

2 ∂2

∂y2

(
y2e−y

2
h(x, y)

)∣∣∣
y=0

.

where we have integrate over p using Eq. (A.19), fol-
lowed by an integral over the delta function δ(q̃−2y),
and �nally made use of Eqs. (A.22) and (A.23). It
is then easy to see that only the term 2h(x, 0) re-
mains after taking the derivatives and evaluating at
y = 0. Using the normalization of the wave function
in Eq. (A.24) and arrive at

1
4π1/2

∫
dxe−x

2
h(x, 0) = 1

4

∫
dxψ(x)ψ∗(x) = 1

4 .

Due to the linearity of the Wigner function in ρ, this
computation extends from |ψ 〉 to arbitrary single-
mode mixed states, and since the number operator
of each mode is a local observable also to arbitrary
N -mode states. We can hence rewrite Eq. (A.21) as

N2(x, p) = 1
4
(
x2 + p2 − 1

)2 − 1
4 . (A.26)

A.3 Extremal Gaussian precision and fluctua-
tions
In this appendix, we give detailed proofs for the ex-
istence and uniqueness of the extremal values of the
charging precision and �uctuations when restricting
to single-mode Gaussian unitaries at �xed initial tem-
perature and energy input. The corresponding results
are presented and discussed in Sections 4.C and 4.E.

A.3.I Maximal variance

We begin with the maximally possible variance that
single-mode Gaussian unitaries allow for, i.e., the
worst-case scenario. Here, one is interested in de-
termining the maximum of the function V+(r) from
Eq. (54) over all r ≥ 0. For brevity, we will (again)
use the notation ∆ε = ∆E/ω and ν = coth

(
βω
2
)
, as

well as de�ne V+ := 4V+/ω
2, such that the function

that we wish to maximize can be written as

V+ = ν2 cosh(4r)− 1 + 2νe2r(2∆ε− ν
[
cosh(2r)− 1

])

= −ν2[sinh(4r)− 2e2r(2∆ε
ν + 1)

]
− (ν2 + 1).

(A.27)
To determine the extremal points, we calculate the
�rst and second partial derivatives of V+ w.r.t. r, i.e.,

∂V+
∂r

= −4ν2[cosh(4r)− (2∆ε
ν + 1)e2r], (A.28)

∂2V+
∂r2 = −8ν2[2 sinh(4r)− (2∆ε

ν + 1)e2r]. (A.29)
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The condition ∂V+
∂r |r=rextr. = 0 at the extremal points

r = rextr. yields

(2∆ε
ν + 1) = e−2rextr. cosh(4rextr.) . (A.30)

Now note that the left-hand side is greater or equal
than 1, while the function f(r) = e−2r cosh(4r) ap-
pearing on the right-hand side satis�es f(r = 0) = 1
and has a minimum at r = ln(3)/8 > 0 (as can be
seen by setting ∂f(r)/∂r = 0), and f(r)r→∞−→∞. Con-
sequently, Eq. (A.30) has two solutions r±extr., with
r+
extr. > ln(3)/8 > 0 and r−extr. < 0. Inserting (2∆ε

ν +1)
from Eq. (A.30) back into the second partial deriva-
tive gives

∂2V+
∂r2

∣∣∣∣
r=rextr.

= −4ν2[e4rextr. − 3e−4rextr.
]
, (A.31)

which is negative for r+
extr. (which is > ln(3)/8) and

positive for r−extr. < 0. We thus have a local maximum
at r = r+

extr., while r
−
extr. is a local minimum. Then, re-

call that we are interested in non-negative solutions (a
negative squeezing parameter would reverse the roles
of ξ1 and ξ2 in our treatment, see Section 4.C), and
can thus discard r−extr.. Moreover, this eliminates all
values of V+(r) for r < r−extr., which can become larger
than V+(r+

extr.). In other words, in the relevant range
r ≥ 0, a (global) maximum of V+(r) can be found at
r+
extr.. Nevertheless, this is not the sought-after max-
imum for the variance, as we shall explain next.
If r+

extr. > 0, implicitly determined by Eq. (A.30),
were the correct solution, we could express the total
input energy as

∆ε = ν
2
(
e−2r+

extr. cosh(4r+
extr.)− 1

)
. (A.32)

Since the energy (in units of ω) invested into squeezing
as a function of the squeezing parameter is given by
∆εsq = ν

2
(
cosh(2r) − 1

)
, see Eq. (51), we could then

write the energy invested into squeezing for r = r+
extr.

as
(
∆εd

)
r=r+

extr.
=
(
∆ε−∆εsq

)
r=r+

extr.
(A.33)

= ν
4
(
e−6r+

extr. − e−2r+
extr.
)
< 0.

In other words, the (local) maximum of the function
V+(r) at r = r+

extr. is not physically realizable, since
we must require ∆εd ≥ 0. Put simply, the max-
imum at r = r+

extr. would require more energy to
be invested into squeezing than is available overall,
∆εsq > ∆ε. Since ∆εsq is strictly increasing with in-
creasing squeezing parameter, we are hence looking
for a solution for some r = r+ < r+

extr. that maximizes
V+ within the physically allowed range. Our previ-
ous analysis informs us that such a solution exists
uniquely. The function V+(r) has one local minimum
at a negative argument, and one local maximum for
r > 0, and must hence be strictly increasing between
r and r+

extr.. The solution we are looking for is thus

unique and found for the maximal value r = r+ al-
lowed by the global energy constraint, that is

∆εsq = ∆ε = ν
2
(
cosh(2r+)− 1

)
. (A.34)

Expressing r+ as a function of ∆ε and ν then yields the
result presented in Eq. (55), i.e., the worst precision
for Gaussian single-mode unitaries is achieved when
all energy is invested into single-mode squeezing.

A.3.II Minimal variance

Next we are interested in determining the optimal
strategy using Gaussian single-mode unitaries. To
this end, we similarly de�ne V− := 4V−/ω2 with V−
as in Eq. (54), that is, we have to minimize

V− = ν2 cosh(4r)−1+2νe−2r(2∆ε−ν
[
cosh(2r)−1

])

= ν2[sinh(4r) + 2e−2r(2∆ε
ν + 1)

]
− (ν2 + 1).

(A.35)

The partial derivatives w.r.t. to r yield

∂V−
∂r

= 4ν2[cosh(4r)− (2∆ε
ν + 1)e−2r], (A.36)

∂2V−
∂r2 = 8ν2[2 sinh(4r) + (2∆ε

ν + 1)e−2r]. (A.37)

The extremal condition ∂V−
∂r |r=rextr. = 0 then yields

(2∆ε
ν + 1) = e2rextr. cosh(4rextr.) , (A.38)

which has a unique solution rextr. = r− for rextr. ≥
0 since the function e2r cosh(4r) is greater or equal
than 1 and is strictly increasing for r ≥ 0. Therefore,
we have one and only one solution r− ≥ 0 for every
value of (2∆ε

ν +1). Moreover, inserting into the second
derivative gives

∂2V−
∂r2

∣∣∣∣
r=r−

= 4ν2[3e4r− − e−4r−
]
, (A.39)

which is positive for r− > − ln(3)/8 and hence in par-
ticular when r− > 0. Inserting rextr. = r− into the
condition of Eq. (A.38) and expressing ∆ε one thus
arrives at the result of Eq. (57), i.e.,

∆ε = ν
2
(
e2r− cosh(4r−)− 1

)
. (A.40)

Moreover, for the minimum we �nd that the energy
input splits into squeezing and displacement accord-
ing to

∆εsq = ν
2
(
cosh(2r−)− 1

)
, (A.41)

∆εd = ∆ε−∆εsq = ν
2 e

4r− sinh(2r−) ≥ 0 , (A.42)

such that, unlike the maximum at r+
extr. discussed be-

fore, the desired minimum can be physically realized
for all ∆ε and ν.

Accepted in Quantum 2018-04-18, click title to verify 18



A.3.III Maximal fluctuations

Let us now determine the maximal �uctuations that
are possible during a charging process at �xed input
energy via single-mode Gaussian unitaries. That is,
we are interested in �nding the maximum value of
(∆W+(r)/ω)2 from Eq. (67) over all r for �xed ∆ε and
ν. To simplify this task, we note that this is equivalent
to the maximization problem for the function W+(r),
given by

W+(r) = 1
4V+ − 1

2 (ν − 1)2 cosh(2r), (A.43)

which, up to terms independent of r, corresponds to
(∆W+(r)/ω)2 from Eq. (67). The �rst two partial
derivatives w.r.t. r are

∂W+
∂r

= 1
4
∂V+
∂r
− (ν − 1)2 sinh(2r) (A.44)

= ν2
[(

2∆ε
ν + 1

)
e2r − cosh(4r)−

(
ν−1
ν

)2 sinh(2r)
]
,

∂2W+
∂r2 = 1

4
∂2V+
∂r2 − 2(ν − 1)2 cosh(2r) (A.45)

= 2ν2
[(

2∆ε
ν + 1

)
e2r − 2 sinh(4r)−

(
ν−1
ν

)2 cosh(2r)
]
,

where we have inserted for the partial derivatives of
V+ from Eqs. (A.28) and (A.29). For the purpose of
solving the maximization problem, we introduce the
notation χ :=

(
2∆ε
ν + 1

)
≥ 1 and λ := (ν − 1)2/ν2,

with 0 ≤ λ ≤ 1 since ν ≥ 1, such that the extremal
condition

(
∂W+/∂r

)
r=r̃+

= 0 at the extremal point
r = r̃+ reads

λ 1
2 (1− e−4r̃+) + 1

2
(
e2r̃+ + e−6r̃+

)
= χ. (A.46)

We then de�ne u := e−2r along with a family of func-
tions fλ(u) via

fλ(u) := λ 1
2
(
1− u2)+ 1

2
( 1
u + u3). (A.47)

The maximization problem for W+(r) can thus be
formulated as the question: Does there exist a u = uχ,
with 0 < uχ ≤ 1, for every pair of λ and χ, such that
fλ(u = uχ) = χ? To answer this question, we �rst
determine the extremal point uλ of fλ, i.e., such that

∂fλ(u)
∂u

∣∣∣∣
u=uλ

= −λuλ − 1
2
( 1
u2
λ

− 3u2
λ

)
= 0, (A.48)

which implies g(uλ) := 1
2
(
3uλ − 1

u3
λ

)
= λ for uλ > 0.

Since g(uλ) is a continuous, strictly increasing func-
tion of uλ that can take the values g(uλ = 3−1/4) = 0
and g(uλ = 1) = 1, there is exactly one uλ that satis-
�es g(uλ) = λ for any λ between 0 and 1, suggesting
that fλ(u) always has a unique local extremal point
within the interval ]0, 1[. Inspection of the second
partial derivative, i.e.,

∂2fλ(u)
∂u2

∣∣∣∣
u=uλ

=
(
−λ− 1

u3
λ

+ 3uλ
)
u=uλ

(A.49)

= 1
2
(
3uλ − 1

u3
λ

)
= λ ≥ 0,

then reveals that the local extremum is a local min-
imum. Moreover, since fλ(u = 1) = 1, this means
that the minimal value is below one, fλ(uλ) < 1. In
contrast, we have fλ(u)u→0

−→∞, suggesting that fλ(u)
is strictly decreasing on the interval [0, uλ[ and can
there take any value between fλ(uλ) < 1 and ∞ (in
particular, any value χ). We have thus found that
there is a unique uχ < uλ for every λ and χ such that
fλ(uχ) = χ.
In other words, Eq. (A.46) has a unique solution r̃+

for every valid λ and χ. To check that this solution is
a maximum, we calculate

∂2W+
∂r2

∣∣∣∣
r=r̃+

= 2ν2[χe2r̃+ − 2 sinh(4r̃+)− λ cosh(2r̃+)
]

= 2ν2[ χ
uχ
− 1

u2
χ

+ u2
χ − λ

2
( 1
uχ

+ uχ
)]
, (A.50)

where we have substituted e−2r̃+ = uχ. Further in-
serting for χ = fλ(uχ) from Eq. (A.47), and compar-
ing with Eq. (A.48), we arrive at

∂2W+
∂r2

∣∣∣∣
r=r̃+

= 2ν2
[
−λuχ − 1

2
( 1
u2
χ

− 3u2
χ

)]

= 2ν2 ∂fλ(u)
∂u

∣∣∣∣
u=uχ

< 0, (A.51)

which is negative since uχ < uλ is below the minimum
uλ of fλ(u). Consequently, the extremal value of W+
is a maximum, which we have thus shown exists and
is unique for any �xed λ and χ corresponding to �xed
values of ∆E and T .

A.3.IV Minimal fluctuations

Similarly, we now wish to determine the minimal �uc-
tuations that are possible during a single-mode Gaus-
sian unitary charging process at �xed input energy,
i.e., we want to minimize (∆W−(r)/ω)2 from Eq. (67)
over all r for �xed ∆ε and ν. As in the previous
section, we simplify the problem by considering the
equivalent minimization of the function W−(r), given
by

W−(r) = 1
4V− − 1

2 (ν − 1)2 cosh(2r). (A.52)

Up to terms independent of r, this function corre-
sponds to (∆W−(r)/ω)2 from Eq. (67). The �rst two
partial derivatives w.r.t. r are then

∂W−
∂r

= 1
4
∂V−
∂r
− (ν − 1)2 sinh(2r) (A.53)

= ν2
[
−
(
2∆ε
ν + 1

)
e−2r + cosh(4r)−

(
ν−1
ν

)2 sinh(2r)
]
,

∂2W−
∂r2 = 1

4
∂2V−
∂r2 − 2(ν − 1)2 cosh(2r) (A.54)

= 2ν2
[(

2∆ε
ν + 1

)
e−2r + 2 sinh(4r)−

(
ν−1
ν

)2 cosh(2r)
]
,

where we have inserted for the partial derivatives of
V− from Eqs. (A.36) and (A.37). We then proceed
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as in Appendix A.3.III, and formulate the extremal
condition

(
∂W−/∂r

)
r=r̃+

= 0 at the extremal point

r = r̃− in terms of the constants χ :=
(
2∆ε
ν + 1

)
≥ 1

and λ := (ν − 1)2/ν2, with 0 ≤ λ ≤ 1, as

λ 1
2 (1− e4r̃−) + 1

2
(
e−2r̃− + e6r̃−

)
= χ. (A.55)

To verify, that this condition can be met for all λ
and χ, we again de�ne a new variable v := e−2r with
0 ≤ v ≤ 1 for r ≥ 0, and de�ne a family of functions
hλ(v) via

hλ(v) := λ 1
2
(
1− 1

v2

)
+ 1

2
(
v + 1

v3

)
. (A.56)

The minimization problem for W−(r) can thus be
formulated as: Does there exist a v = vχ, with
0 < vχ ≤ 1, for every pair of λ and χ, such that
hλ(v = vχ) = χ? To provide an answer, we start
again by determining if hλ has any extremal points
in the allowed range of v. At such an extremal point
v = vλ we would have

∂hλ(v)
∂v

∣∣∣∣
v=vλ

= λ 1
v3
λ

+ 1
2
(
1− 3 1

v4
λ

)
= 0, (A.57)

which would imply λ = 1
2
( 3
vλ
− v3

λ

)
=: g̃(vλ). How-

ever, the function g̃(vλ) is strictly decreasing for
vλ ∈ [0, 1], with the minimal value g̃(vλ = 1) = 1.
Therefore, hλ(v) has no local minima (or maxima)
on the open interval ]0, 1[. Moreover, hλ(v) diverges
as v → 0, and takes its minimum within the allowed
range of v for v = 1, i.e., hλ(v = 1) = 1. We have
thus shown that hλ(v) is a strictly decreasing func-
tion of v ∈ [0, 1] that can take any value between 1
and ∞. There is thus a unique value vχ such that
hλ(v = vχ) = χ for every χ and λ.
Finally, we check that we have indeed found a min-

imum of W− by evaluating the second partial deriva-
tive at r = r̃− (corresponding to v = vχ), i.e.,

∂2W−
∂r2

∣∣∣∣
r=r̃−

= 2ν2[χe−2r̃− + 2 sinh(4r̃−)− λ cosh(2r̃−)
]

= 2ν2[χvχ + 1
v2
χ
− v2

χ − λ
2
( 1
vχ

+ vχ
)]
, (A.58)

where we have substituted e−2r̃− = vχ. Inserting for
χ = hλ(vχ) from Eq. (A.56), and comparing with
Eq. (A.57), we obtain

∂2W−
∂r2

∣∣∣∣
r=r̃−

= 2ν2
[
−λ 1

vχ
− 1

2
(
v2
χ − 3 1

v2
χ

)]

= 2ν2v2
χ

∂hλ(v)
∂v

∣∣∣∣
v=vχ

≥ 0, (A.59)

which is nonnegative since hλ(v) is strictly decreasing
for 0 ≤ v ≤ 1, and hence has a negative �rst deriva-
tive on this interval. We can therefore �nally conclude
that the extremal value of W− is a minimum that ex-
ists and is unique for any �xed λ and χ corresponding
to �xed values of ∆E and T .
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Correlations lie at the heart of almost all scientific predictions. It is therefore of interest to ask whether
there exist general limitations to the amount of correlations that can be created at a finite amount of invested
energy. Within quantum thermodynamics such limitations can be derived from first principles. In particular,
it can be shown that establishing correlations between initially uncorrelated systems in a thermal background
has an energetic cost. This cost, which depends on the system dimension and the details of the energy-level
structure, can be bounded from below but whether these bounds are achievable is an open question. Here, we
put forward a framework for studying the process of optimally correlating identical (thermal) quantum systems.
The framework is based on decompositions into subspaces that each support only states with diagonal (classi-
cal) marginals. Using methods from stochastic majorisation theory, we show that the creation of correlations
at minimal energy cost is possible for all pairs of three- and four-dimensional quantum systems. For higher
dimensions we provide sufficient conditions for the existence of such optimally correlating operations, which
we conjecture to exist in all dimensions.

I. INTRODUCTION

Correlations can be regarded as the fundamental means of
obtaining information: From a physical perspective, obtaining
knowledge requires correlation of physical variables in an ob-
served system with physical variables in a measurement appa-
ratus [1]. As long as one regards system and measurement ap-
paratus as separate entities which are not persistently strongly
interacting [2], this correlation requires an investment of en-
ergy. Conversely, all correlations imply extractable work [3].
Since correlations and energy (work) can be considered to be
resources in (quantum) information theory and thermodynam-
ics, respectively, these observations establish one of the fun-
damental connections between these theories. Indeed, both
theories already share a common framework using statistical
ensembles to capture knowledge about collections of physical
systems. This knowledge can then be harnessed to facilitate
the most efficient use of the available resources, e.g., energy,
for the tasks at hand. The young field of quantum thermo-
dynamics combines features from both fields and investigates
their interplay in the quantum domain [4–6].

Here, we explore the specific quantitative relation between
correlations and energy [7]. While general qualitative in-
sights can help to understand some quandaries arising from
Maxwell’s demon or Szilard’s engine [8–10], and correla-
tions play various interesting roles in quantum thermody-
namics (see, e.g., [2, 3, 11–18]), precise quantitative state-
ments about the trade-off between work and correlations are
generally complicated. For example, by allowing arbitrar-
ily slow quasi-static operations and perfect control over ar-
bitrarily many auxiliary systems, one may provide tight lower

∗ These authors contributed equally to this work.
† marcus.huber@univie.ac.at
‡ nicolai.friis@univie.ac.at

bounds on the work cost of creating bipartite correlations as
measured by the mutual information [7, 11, 12, 19, 20]. How-
ever, for two identical systems, these bounds are tight only in
the case when specific so-called symmetrically thermalizing
unitaries (STUs) exist, i.e., unitaries that map initial thermal
states to locally thermal states at higher local effective tem-
peratures. Moreover, how well two systems can be correlated
for a given energy in finite time and with limited control is
generally not known. In particular, the possibility of optimal
conversion of energy into correlations for the interesting spe-
cial case of fully controlled, closed systems with two identical
subsystems rests entirely on the assumed existence of STUs.
In this sense, central open questions at the very foundations of
quantum thermodynamics concern the quantitative correspon-
dence between correlations and energy.

In this paper, we put forward a framework for investigating
potential marginal spectra in the unitary orbit of any quan-
tum state via decompositions into locally classical subspaces
(LCSs) and majorisation relations. Here, LCSs are subspaces
of a bipartite Hilbert space that support only states that are lo-
cally classical, i.e., states which have diagonal marginals with
respect to a chosen basis. We use this approach to investigate
the question of existence of STUs for arbitrary bipartite quan-
tum systems. In particular, we show that STUs exist for two
identical copies of arbitrary three- and four-dimensional sys-
tems, thereby extending previous results on the special case
of Hamiltonians with equally-spaced energy gaps [11, 20]. In
addition, we formulate sufficient conditions for the existence
of STUs for identical subsystems with arbitrary local dimen-
sion and for multiple copies of the initial state. Indeed, we
show that STUs exist in the limit of infinitely many copies.

This paper is structured as follows: In Sec. II, we describe
the conceptual framework of our investigation, formulate our
central question, and briefly review the state of the art. In
Sec. II.1.1, we further discuss that, while STUs do not in gen-
eral exist for asymmetric situations where the two systems
have different Hamiltonians, this does not resolve the problem

mailto:marcus.huber@univie.ac.at
mailto:nicolai.friis@univie.ac.at
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of maximizing correlations for asymmetric systems. We then
focus on the open case of two identical subsystems in Sec. II.2
and discuss a family of unitary transformations that result in
symmetric, diagonal marginals. These unitaries have a block-
diagonal structure with respect to a specific choice of LCSs,
and give rise to a rich structure of potential marginal transfor-
mations. In particular, they allow showing that STUs exist in
the asymptotic limit of infinitely many copies. In Sec. III, we
then formulate three alternative approaches to demonstrating
the existence of STUs based on unitaries in these LCSs. As
we show, all three approaches allow proving the existence of
STUs in local dimension d = 3. However, only two of these
approaches are successful (to different extent) in local dimen-
sion d = 4 and provide general sufficient conditions for the
existence of STUs for higher dimensions. Finally, in Sec. IV
we provide a summary and discussion and put forward a hy-
pothesis for general dimensions.

II. FRAMEWORK

II.1. Main question

Let us start our investigation with a detailed description of
the problem: We consider the process of correlating two pre-
viously uncorrelated quantum systems. More precisely, we
study the controlled interaction of two quantum systems A
and B with Hamiltonians HA and HB, respectively, which
are initially in a tensor product state %A ⊗ %B, with the goal
of increasing the correlations between them. As we want to
obtain optimal bounds, we consider optimal coherently con-
trolled systems, i.e. the ability to externally engineer and time
any interaction Hamiltonian between the two quantum sys-
tems, resulting in unitary dynamics on the system and we thus
study the global unitary orbit of product states. Furthermore,
we are interested in the energy needed to establish correlations
between these initially uncorrelated quantum systems.

One could generalise the question from perfect system con-
trol and thus unitaries on the system, to correlating maps
generated by unitaries on the system and arbitrary auxiliary
systems, inducing completely positive and trace preserving
(CPTP) maps on the system. However, some transforma-
tions (e.g., cooling to the ground state) may only be achiev-
able asymptotically (i.e., using infinite time or energy [21–
24]). Moreover, the implementation of CPTP maps gener-
ally requires access to and control over auxiliary systems, re-
sulting in an implicit energy cost for preparation and manip-
ulation of the auxiliaries that is obscured by the use of the
CPTP maps instead of the explicit description of the corre-
sponding unitaries on the total Hilbert space. Consequently,
it is of interest to understand the limits of unitary correlating
processes, which allow for a complete account of all the en-
ergetic changes within the system. Moreover, to give a fair
account of the energy that needs to be supplied to the system,
it is important to consider initial states that do not implicitly
supply free energy. That is, we assume that the initial states
of the subsystems are thermal states at the same temperature
T , i.e., %A = τA(β) and %B = τB(β) with β = 1/T (we use

units where kB = 1 throughout), where τ(β) ∶= e−βH/Z andZ = Tr(e−βH). In this way, the initial state τA(β) ⊗ τB(β)
minimises the local energies for given entropies and is also
completely passive [25], i.e., a state from which no energy
can be extracted unitarily even when taking multiple copies.

Correlations can be quantified in different ways. Qualita-
tively, one may describe correlations between two subsystems
as the feature that more information is available about prop-
erties of the joint system than about properties of the subsys-
tems. If there is no preference as to the specific properties that
are to be correlated, i.e., if one is interested in quantifying any
correlations, it is most useful to consider entropic measures.
The most paradigmatic among them is the mutual informationI(%AB) = S(%A) + S(%B) − S(%AB), based on the von Neu-
mann entropy S(%) ∶= −Tr(% ln%). Although we focus on the
von Neumann entropy, in principle one can replace it with any
other measure of local ‘mixedness’. And indeed, our methods
are framed in the context of majorisation relations, and thus in
principle also open an avenue towards studying other entropic
measures.

When focusing on the mutual information, the problem
of unitarily creating correlations can be reduced to the task
of maximising the sum of the marginal entropies under lo-
cal energy constraints. That is, the invested energy ∆E ∶=
Tr[HAB(UABτA(β) ⊗ τB(β)U †

AB − τA(β) ⊗ τB(β))], where
HAB ∶= HA + HB, only depends on the local marginals,
while the global entropy is invariant under unitary opera-
tions. The change in mutual information thus reduces to
∆I = ∆SA +∆SB. We thus arrive at the following question:

Question 1: Maximal mutual information under en-
ergy constraint

For a given pair of local Hamiltonians HA and HB and
initial temperature T = 1/β, what is the maximum value
of

∆I = ∆SA +∆SB (1)

for an invested energy of at most ∆E?

The fact that thermal states maximise the local entropies un-
der local energy constraints suggests that the maximal value
of ∆I is always achieved when the final state marginals are
thermal at a higher temperature T ′ ≥ T (or, equivalently, for
β′ ≤ β), i.e., %̃A = τA(β′) and %̃B = τB(β′), provided that the
corresponding STUs exist. This is indeed the case as shown
in Appendix A.I and is what leads us to the question of the ex-
istence of STUs. While when HA = HB, one might still hope
for STUs to exist for all dimensions, Hamiltonians and tem-
peratures, such a statement cannot be made when HA ≠ HB.
Before introducing our framework for constructing STUs, let
us therefore briefly discuss general bounds on the achievable
local entropies.
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II.1.1. Asymmetric case

Let us consider Question 1 in the case HA ≠ HB. Al-
though the problem is in general complex, note that non-
trivial constraints on marginal spectra for given global spec-
tra exist in the form of entropy inequalities. In particular,
both the von Neumann entropy S(%) and the Rényi 0-entropy
S0(%) ∶= − log2(rank(%)) satisfy subadditivity [26, 27], while
no other entropy satisfies (dimension independent) linear in-
equalities [28]. Since we are interested in thermodynamic
questions, where the rank of the involved states is typically
full, only subadditivity of the von Neumann entropy, which
we can write as

S(%AB) ≥ ∣S(%A) − S(%B)∣, (2)

provides a nontrivial constraint. Also observe that, given an
initial state τA(β) ⊗ τB(β) subject to a unitary evolution, the
entropy of the total system is fixed to S(%AB) = S(τA(β)) +
S(τB(β)). If we assume that the final marginals are thermal
states with equal higher temperature i.e., β′ ≤ β, inequality (2)
can be rewritten as

∣S(τA(β′)) − S(τB(β′))∣ ≤ S(τA(β)) + S(τB(β)). (3)

This already implies a nontrivial constraint, and also provides
a counterargument to the naive assumption that two thermal
marginals at the same temperature are reachable in general.

While this makes the structure complicated to deal with in
general, one can still solve the optimisation in some special
cases. In particular, for a system initialised in the ground
state, i.e., a product of two pure states τAB(β → ∞) =∣0A 0B ⟩⟨0A 0B ∣, the total state remains pure during the unitary
evolution and hence has a Schmidt decomposition. The final
state can therefore be written as

∣ ψ̃ ⟩ = d∑
i=0

√
pi ∣ϕAi , ϕBi ⟩ , (4)

for some probabilities pi, with d = min{dA, dB}, and dA and
dB the dimensions of the respective Hilbert spacesHA andHB.
And the final marginals are

%̃A = d−1∑
i=0

pi ∣ϕAi ⟩⟨ϕAi ∣ , %̃B = d−1∑
i=0

pi ∣ϕBi ⟩⟨ϕBi ∣ . (5)

This already means that the marginals (since they have equal
rank) cannot both be thermal states if dA ≠ dB.

However, in this case it is still possible to maximise the
amount of correlation subject to a given maximal amount of
energy consumption. In other words, one can find optimal
points of the following optimisation problem:

max
%̃A,%̃B

S(%̃A) + S(%̃B)
subject to Tr(%̃AHA) + Tr(%̃BHB) ≤ c

%̃A and %̃B as in Eq. (5).

(6)

To do so one first solves the (loosely speaking) inverse prob-
lem of minimising the energy consumption for a given amount

of correlation. This problem can be turned into two instances
of the well-known passivity problem [25], for which passive
states are the solutions. Using this fact, the problem reduces to
a simple problem that can be solved using Lagrange multipli-
ers. One then shows that the solution found for that problem
is strictly monotonically increasing in the constraint, allowing
us to reverse the problem and show that it is a solution of the
problem in (6). For more details see Appendix A.II. See also
Ref. [29] for an alternative approach to the energy minimisa-
tion problem. The solutions obtained for (6) are thermal states
at inverse temperature β(c) (uniquely defined by the constant
c) of the Hamiltonians H̃A and H̃B, respectively, defined as

H̃A = d−1∑
i=0

(EA

i +EB

i ) ∣ i ⟩⟨ i ∣A
H̃B = d−1∑

i=0

(EA

i +EB

i ) ∣ i ⟩⟨ i ∣B ,
(7)

where

HA = dA−1∑
i=0

EA

i ∣ i ⟩⟨ i ∣
A
, EA

i ≤ EA

i+1,

HB = dB−1∑
i=0

EB

i ∣ i ⟩⟨ i ∣
B
, EB

i ≤ EB

i+1.

(8)

The solutions hence take the form

%̃opt,A(β(c)) = Π̃Ae
−β(c)H̃AΠ̃A

Tr(Π̃Ae−β(c)H̃A) ,
%̃opt,B(β(c)) = Π̃Be

−β(c)H̃B Π̃B

Tr(Π̃Be−β(c)H̃B) ,
(9)

where Π̃A/B ∶= ∑d−1
i=0 ∣ i ⟩⟨ i ∣

A/B. The maximal amount of corre-
lation achievable given a maximal amount of energy c is then

2S(%̃A) = 2β(c)c + 2 ln [Tr(e−β(c)H̃A)] . (10)

II.1.2. Symmetric case

Let us now consider the symmetric case HA = HB.
Following our considerations in the previous section and
Appendix A.I, it is clear that an upper bound for ∆I is in
this case achieved when ∆SA = ∆SB, and since the states
with maximal entropy given a fixed energy are thermal states,
Question 1 can be substantially simplified to that of the
existence of symmetrically thermalizing unitaries.

Question 2: Existence of STUs

Does there exist a unitary UAB onHAB such that

%̃A = TrB(UABτAB(β)U †
AB

) = τA(β′),
%̃B = TrA(UABτAB(β)U †

AB
) = τB(β′), (11)

for every pair of local HamiltoniansHA =HB, for all final
temperatures T ′ = 1/β′ and all initial temperatures T =
1/β ≤ T ′?
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If such STUs exist, then they are automatically the opti-
mally correlating unitaries for a given system. It is already
known that Question 1 can be answered affirmatively when
the subsystem Hamiltonians are equally spaced, i.e., HA =
HB = ∑d−1

n=0En ∣n ⟩⟨n ∣ withEn+1−En = ω ∀n ∈ {0,1, . . . , d−
1} for some constant ω (with appropriate units) [11] (see also
the more recent formulation of the derivation in Ref. [30]).
In particular, this implies that such optimally correlating uni-
taries always exist for two qubits, i.e., when d = 2. However,
there is (yet) no answer for the general situation of arbitrary
Hamiltonians and dimensions. To fill this gap, we present a
framework that generalises previous approaches [11] and al-
lows investigating this general question in the symmetric cases
for any dimension. This approach is based on unitary opera-
tions in LCSs, as we will explain in Sec. II.2, and enables us
to show that STUs exist for the simplest nontrivial cases of
two qutrits (d = 3) and two ququarts (d = 4).

II.2. Unitary operations on locally classical subspaces

Let us now discuss our general framework for marginal
transformations. The central idea of this approach is to de-
compose the diagonal elements of the marginals into elements
originating from different subspaces, with the property that
any unitary that leaves the division into these subspaces in-
variant never creates local off-diagonal elements.

More precisely, we consider a pair of d-dimensional sys-
tems A and B with matching local Hamiltonians HA = HB =∑d−1
i=0 Ei ∣ i ⟩⟨ i ∣, where we set E0 = 0 without loss of gener-

ality. Moreover, let the energy eigenvalues, sorted in non-
decreasing order (with Ei+1 ≥ Ei ∀ i), be measured in units of
E1. The initial thermal states of A and B are

τA(β) = τB(β) = d−1∑
i=0

pi(β) ∣ i ⟩⟨ i ∣ , (16)

where pi(β) = e−βEi/Z(β) and Z(β) = ∑i e−βEi . For con-
venience, we use the shorthand pi ≡ pi(β). The joint initial
state τAB = τA(β) ⊗ τB(β) is also diagonal with respect to the
energy eigenbasis and its diagonal entries are products of the
diagonal entries of the reduced states, i.e., we write pij ∶= pipj
such that τAB = ∑d−1

i,j=0 pij ∣ij⟩⟨ij∣. Since the unitaries that
we use throughout the manuscript do not create coherence
in the marginals, it is convenient to introduce a vectorised
notation for the diagonal entries of the reduced states. That
is, for arbitrary diagonal joint states pAB = diag{pij}d−1

i,j=0

where the pij need not factorise with respect to i and j, the
reduced states %A = TrB(%AB) and %B = TrA(%AB) are diag-
onal, and the diagonal entries can be collected into vectors
pA,pB ∈ Rd with nonnegative components and unit 1-norm,∣∣pA∣∣ = Tr(%A) = 1 = ∣∣pB ∣∣.

II.2.1. Locally classical subspaces

Having expressed the diagonals of the marginals in this vec-
torised form, we further choose particular subspace vector de-

compositions, as we illustrate for d = 3 in Box 1. For general
local dimension d ≥ 3, we write pA and pB as sums of d vec-
tors according to

pA = d−1∑
i=0

rAi = d−1∑
i=0

ri, pB = d−1∑
i=0

rBi = d−1∑
i=0

Πi ri, (17)

where rAi = ri = ∑d−1
j=0 pj j+i ej and rBi = ∑d−1

j=0 pj−i j ej . Here,{ej}d−1
j=0 denotes the chosen orthonormal basis of Rd and all

indices are to be taken modulo d. In the second equality, we
have further used the fact that the i-th vector rBi in the de-
composition of pB can be related to the i-th vector rAi in the
decomposition of pA via the i-th power of the cyclic permuta-
tion matrix Π = (Πij) with components Πij = δi,j+1 modd.

One further observes that the decomposition of pA and pB
into these vectors corresponds to the selection of a total of d
subspacesHq and {Hri}d−1

i=1 of the joint Hilbert spaceHAB,

Hq ∶= Hr0 = span{∣j j ⟩}d−1
j=0 , Hri = span{∣j j + i ⟩}d−1

j=0 ,

(18)

with HAB = Hq ⊕d−1
i=1 Hri , such that arbitrary unitaries Uq

and Uri applied in either of the d subspaces cannot lead to
nonzero off-diagonal elements in the reduced states %A or %B,
provided that none are present to begin with. In other words,
any state on HAB that has support on only one of these sub-
spaces, or which has a block-diagonal structure with respect to
this subspace decomposition, is locally classical, i.e., has di-
agonal marginals with respect to the local bases {∣j ⟩}d−1

j=0 . We
hence call these subspaces locally classical. However, note
that the choice of LCSs we make here is not unique, as dis-
cussed below in Sec. II.2.2.

A unitary transformation %AB ↦ %̃AB = U%ABU
† with

U = Uq ⊕d−1
i=1 Uri hence does not preclude off-diagonal ele-

ments from appearing in the joint state %̃AB but leaves the re-
duced states diagonal, implying that we can directly read off
the spectra of the marginals. In such a case, it is still useful
to describe the marginals by d-component vectors p̃A and p̃B
collecting their diagonal elements, and the transformation of
these vectors can be represented as

pA ↦ p̃A = Mqq + d−1∑
i=1

Mriri, (19)

pB ↦ p̃B = Mqq + d−1∑
i=1

ΠiMriri, (20)

where q = rA0 = rB0 , and Mq and Mri are unistochastic d × d
matrices, i.e., doubly stochastic (entries in rows and columns
sum to 1) square matrices Mα (with α ∈ {q, ri}) whose com-
ponents can be understood as the moduli squared of unitary
matrices, (Mα)kl = ∣(Uα)kl∣2.

As a technical remark, note that the Schur-Horn theorem
implies a weak convexity property for unistochastic matrices,
namely that for any v ∈ Rd, the set of vectors obtained by ap-
plying the set of unistochastic d×dmatrices to v is equivalent
to the set of vectors obtained by applying the set of doubly
stochastic d × d matrices to v, see Ref. [31]. This means that
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Box 1: Unitary operations on locally classical subspaces for two qutrits

For any tensor product of two identical states τAB = ∑2
i,j=0 pij ∣ij⟩⟨ij∣, we can separate the local diagonal elements (i.e.,

the eigenvalues, since the matrix is diagonal) through an economic notation where we denote the diagonal entries of the
marginals as entries in vectors

pA ∶= τA = ⎛⎜⎝
p00 + p01 + p02

p11 + p12 + p10

p22 + p20 + p21

⎞⎟⎠ = q + r1 + r2, pB ∶= τB = ⎛⎜⎝
p00 + p10 + p20

p11 + p21 + p01

p22 + p02 + p12

⎞⎟⎠ = q +Π2 r2 +Π r1, (12)

where Π = (Πij) is a cyclic permutation matrix with components Πij = δi,j+1 mod 3. Employing the unitary UAB = Uq ⊕
Ur1 ⊕Ur2 , where Uq , Ur1 , and Ur2 act unitarily on the subspaces

Hq ∶= span{∣00 ⟩ , ∣11 ⟩ , ∣22 ⟩}, Hr1 ∶= span{∣01 ⟩ , ∣12 ⟩ , ∣20 ⟩}, Hr2 ∶= span{∣02 ⟩ , ∣10 ⟩ , ∣21 ⟩}, (13)

respectively, the transformation of the marginals can be described by unistochastic matrices

p̃A =Mq q +Mr1r1 +Mr2r2, p̃B =Mqq +Π2Mr2r2 +ΠMr1r1. (14)

The components of the unistochastic matrices are determined by the moduli squared of corresponding unitary matrices,(Mα)kl = ∣(Uα)kl∣2 for α = q, r1, r2. Due to the symmetry pij = pji, we can further identify r2 = Πr1 to obtain

p̃A =Mq q +Mr1r1 +Mr2Πr1, p̃B =Mqq +Π2Mr2Π r1 +ΠMr1r1. (15)

for any doubly stochastic matrix M and vector v, there exists
a unistochastic matrix Mv such that M v = Mvv. Here, this
property permits us to conclude that the vectorised marginals
of any state reachable by unitaries of the formU = Uq⊕d−1

i=1 Uri
can be written in terms of the action of doubly stochastic ma-
trices Mq and Mri on q and ri, respectively.

In general, Eq. (19) can be rewritten as

p̃A =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mqq + k∑

i=1
(Mriri +Mrd−ird−i) d odd

Mqq + k−1∑
i=1

(Mriri +Mrd−ird−i) +Mrd/2rd/2 d even
,

(21)

where k = d−1
2

if d is odd and k = d
2

if d is even. Further
taking into account the symmetry pij = pji, which implies
rd−i = ∑d−1

j=0 pj j+d−iΠiej−i = Πiri, the vectorised form of the
marginal A can be written in a compact way as

p̃A = Mqq + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1(Mri +Mrd−iΠi)ri, (22)

where ⌊x⌋ denotes the floor function of x, and the prefactor(⌊ 2i
d
⌋ + 1)−1 is equal to 1 unless d is even and i = k, in which

case it is 1
2

. Using Eq. (20), one may obtain the transformed
marginal B as

p̃B =Mqq + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1(ΠiMri +Π−iMrd−iΠi) ri,

(23)

where we have used the property Π−i = Πd−i of the d-
dimensional cyclic permutation. To satisfy the conditions of

Question 2, we need to further restrict ourselves to a sub-
group of transformations which generate the same marginals,
p̃A = p̃B. This requirement results in the condition

Mrd−i = ΠiMriΠ
−i for i = 1, . . . , k, (24)

for the doubly stochastic matrices mentioned in Eq. (22). With
this, we arrive at the form

p̃ = p̃A = p̃B = Mqq + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1(1 +Πi)Mriri (25)

for both vectorised marginals. Now that we have ensured that
both marginals transform in the same way, we may concen-
trate on one of them, say p̃A (dropping the subscript A for
ease of notation) and use the established framework to inves-
tigate the existence of STUs as specified in Question 2.

II.2.2. General locally classical subspaces

While we focus here on the decomposition into the spe-
cific LCSs from Eq. (18), we note that this is by far not the
only option. Indeed, let {Pi}i=0,...,d−1 be a set of permuta-
tions of d elements j = 0, . . . , d − 1. Then a sufficient con-
dition for obtaining an LCS decomposition HAB = ⊕d−1

i=0 H̃r̃i
into LCSs of the form H̃r̃i = span{∣jPi(j)⟩}d−1

j=0 is that the
d×d matrix Γ with components Γij = Pi(j) is a Latin square,
i.e., every entry j = 0, . . . , d − 1 appears exactly once in each
row and in each column. For every such choice of LCS de-
composition, one may then apply unitaries Ũ = ⊕d−1

i=0 Ur̃i
that leave the LCSs invariant, i.e., where Ur̃i acts nontriv-
ially only on the subspace H̃r̃i . Denoting the correspond-
ing vector decomposition of the first vectorised marginal as
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pA = ∑d−1
i=0 r̃i, with (r̃i)j = pjPi(j), we have pB = ∑d−1

i=0 P−1
i r̃i

since (rBi )j = pP−1i (j)j = (P−1
i r̃i)j . In this case, unitaries that

leave the LCSs invariant transform the vectorised marginals
according to

pA ↦ p̃A = d−1∑
i=0

Mr̃i r̃i, (26)

pB ↦ p̃B = d−1∑
i=0

P−1
i Mr̃i r̃i, (27)

where the matrices Mr̃i are the unistochastic matrices cor-
responding to the unitaries Ur̃i . This implies the existence
of symmetric marginal transformations, e.g., for unistochas-
tic matrices M that commute with all the Pi, such that the
marginals take the form MpA =MpB = p̃. For the remainder
of this work we focus again on the specific special case we
consider in Eq. (18), where Pi = (Π−1)i.

II.2.3. Asymptotic case

Before we go further into detail on trying to answer Ques-
tion 2, let us briefly showcase that this is indeed a problem
connected to the finite size of the system. More specifically,
we can consider a scenario where one wishes to correlate
multiple copies of the initial thermal states τA(β) and τB(β)
via a joint unitary, such that the final state of n copies is
UτAB(β)⊗nU †, with τAB(β)⊗n = τA(β)⊗n ⊗ τB(β)⊗n. As
we will show now, STUs such that %̃A = %̃B = τ(β′) exist for
all β′, β such that β′ ≤ β, and for all local Hamiltonians in the
limit of infinitely many copies, n→∞.

To see this, note that for any n we can find a unitary such
that the marginals %A/B = TrB/A(UτA(β)⊗n ⊗ τB(β)⊗nU †)
are passive states whose entropy equals that of the thermal
state with the target temperature, i.e., S(%A/B) = S(τA/B(β′)).
This is a consequence of Eq. (25) and the continuity of the
von Neumann entropy. More specifically, note that a trivial
way of obtaining marginals with the same final spectrum is to
select Mq and all Mri in Eq. (25) to be circulant, i.e., con-
vex combinations of cyclic permutations. Since these matri-
ces commute with Πi, one may reach any marginal whose
vectorised marginal is any cyclic permutation of the origi-
nal marginal vector, or indeed, any convex combination of
cyclic permutations of the original marginal vector. In par-
ticular, the equally weighted convex combination of all cyclic
permutations yields maximally mixed marginals, p̃A = p̃B =
1
d ∑d−1

i=0 ei, corresponding to maximal local entropy β′ → 0.
The convex structure of the set of vectors reachable from a
given vector via application of unistochastic matrices then
suggests that the points corresponding to pA and p̃A are con-
nected by a continuous line of states reachable from pA via
circulant unistochastic matrices. The entropy must vary con-
tinuously along this line from the initial value S(τA(β)) to
S(%A) = S(τA(β′)). Thus, one may obtain marginals %A = %B
that are passive states with the desired entropy, but which
might have a different spectra than τA(β′) = τB(β′).

Given this fact, it is sufficient to note that for n → ∞ we
can convert passive states with a given entropy S(%) into ther-

mal states with the same entropy only by using local opera-
tions [25]. Because the application of local operations to the
subsystems leaves the mutual information I(%AB) invariant,
this consequently proves the existence of STUs for the asymp-
totic case n → ∞. Further discussion of the case of finitely
many copies is presented in Appendix A.III.

III. OPTIMALLY CORRELATING UNITARIES FOR
BIPARTITE STATES WITH MATCHING HAMILTONIANS

In this section, we present three approaches to construct
STUs for bipartite systems in an (uncorrelated) initial thermal
state at temperature T = 1/β of H = HA +HB with matching
Hamiltonians HA =HB. We focus on bipartite 3×3 and 4×4-
dimensional systems, and show explicit constructions for such
STUs, thereby proving that Question 2 can be answered affir-
matively for d = 3 and d = 4. In the d = 3 case, we show the
existence of STUs via all three alternative approaches as a ba-
sis for generalisations to higher dimensions. We then turn to
the particular case of dimension d = 4, highlighting the chal-
lenges and strengths encountered for each of these methods,
before proving the d = 4 case using a geometric argument.

Concretely, referring to Sec. II.2 as our framework, we start
from Eq. (25), which provides a transformations of the re-
duced states that leaves both marginals equal and diagonal
with respect to the chosen basis. In general, Mq and all the
Mri are arbitrary doubly stochastic matrices, and therefore
one can try to make use of majorisation conditions to prove
the existence of STUs via the Hardy-Littlewood-Pólya (HLP)
theorem [32, p. 75] or [33, p. 33]. The HLP theorem states that
a necessary and sufficient condition that y ≻ x is that there ex-
ist a doubly stochastic matrix M such that x = My. This, in
fact, is the first argument that we use below for d = 3, where it
allows proving a statement that is actually even stronger than
what is required for STUs. However, the theorem that we are
going to prove holds only for the d = 3 case.

III.1. Majorised marginals approach

In the particular case of d = 3 the final expression for the
(equal) marginals from Eq. (25) is

p̃ = p̃B = p̃A = Mqq + (11 +Π)Mrr, (28)

where, as in Eq. (20), we have introduced the vectors q and r,
with components

q = (p00, p11, p22)T , r = (p01, p12, p20)T . (29)

Based on the HLP theorem and Eq. (28), we are going to prove
the existence of STUs in d = 3 via the following lemma:

Lemma 1. For any 3 × 3 doubly stochastic matrix M , there
exists a 3 × 3 doubly stochastic matrix M̃ such that

M(1 +Π) = (1 +Π)M̃. (30)
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The proof of Lemma 1 is presented in Appendix A.IV. We
are now ready to state the first theorem for d = 3.

Theorem 1: Majorised marginals in d = 3

For every pair of states % and %̃ in a 3-dimensional Hilbert
space which satisfy the condition λ(%̃) ≺ λ(%), where
λ(%) is the vector of eigenvalues of %, there exists a uni-
tary UAB onHAB such that

%̃A = TrB(UAB%⊗ %U †
AB

) = %̃,
%̃B = TrA(UAB%⊗ %U †

AB
) = %̃.

Proof. The unitary is given by UAB = UlocUent, i.e., by
a product of an entangling unitary Uent which acts on the
global system preserving the equal marginals as discussed in
Sec. II.2, and a local unitary of the form Uloc = U ⊗ U , such
that the marginals are kept equal. From Lemma 1 we then
see that, given any doubly stochastic matrix Mq , one can find
Mr such that Mq(1 + Π) = (1 + Π)Mr and consequently a
mapping to each probability vector p̃ such that

p̃ =Mqq + (1 +Π)Mrr = Mq [q + (1 +Π)r] =Mq p.
(31)

From the HLP theorem, we thus know that it is possible to pro-
duce all the vectors p̃ that are majorised by the vector p cor-
responding to the initial state. Thus, we proved that through
the entangling unitary, all the marginals %′ = ∑2

i=0 p̃i ∣ i ⟩⟨ i ∣
such that p̃ ≺ p can be reached from the initial state. Then, if
we can also arbitrarily change their eigenstates in a symmet-
ric way, Theorem 1 is proven. For that, we use a local unitary
U ⊗U with U = ∑2

i=0 ∣φi ⟩⟨ i ∣ to change the eigenstates of the
marginal to an arbitrary set of eigenstates {∣φi ⟩}2

i=0, such that
finally the marginals become %̃ = ∑2

i=0 p̃i ∣φi ⟩⟨φi ∣ in which
the set {∣φi ⟩} can be any orthonormal basis in d = 3.

As a corollary of Theorem 1, the existence of STUs is
proven for the two-qutrit case for initial and final thermal
states with inverse temperatures β and β′ ≤ β, respectively,
since p(β′) ≺ p(β) holds whenever β′ ≤ β.

Unfortunately, generalisations of Lemma 1 to higher di-
mensions fail, as we explain in more detail in Appendix A.V.
Despite the general statement of Theorem 1, any attempts at
generalisations must hence be based on a different approach,
which does not require the existence of a doubly stochastic
matrix M̃ as in Eq. (30) for all doubly stochastic matrices M .

III.2. Alternative approach: “passing on the norm”

Here, we explore another possible approach that makes use
of the HLP theorem and tries to overcome the difficulties en-
countered for generalising the previous approach. Let us first
discuss the method for two d-dimensional systems, before
turning to the special cases d = 3 and d = 4.

To begin, we once again employ the transformation pre-
sented in Eq. (25) to generate equal marginals. Recalling that

the marginals of our final target state are thermal states at in-
verse temperature β′ < β, we decompose the final state vector
into the form

p̃ = a + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1(1 +Πi)bi, (32)

with a ∶= q(β′) = ∑d−1
j=0 pjj(β′)ej and bi ∶= ri(β′) =∑d−1

j=0 pjj+i(β′)ej . Further, recall that the initial states have
the same decomposition with inverse temperature β. One way
of transforming p into p̃ is to transform q into a and ri into
bi for all i = 1, . . . , k. Looking at Eq. (25), one realises that
this is possible if

Mqq = a, (33)

Mriri = bi, i = 1, . . . , k. (34)

Unfortunately, for any β′ < β we have ∥q∥ > ∥a∥, where∥⋅∥ denotes the 1-norm, see Appendix A.VII, and since dou-
bly stochastic transformations conserve the norm of vectors,
Eq. (33) cannot hold true. The norms of the ri also generically
differ from those of the bi, meaning Eq. (34) does not hold
either. However, it is not clear whether ∥ri(β)∥ is a mono-
tonic function of β, and so ∥ri∥ may in principle be smaller
or larger than ∥bi∥, depending on β, β′ and i. Loosely speak-
ing, the vector q has ‘too much norm’. Intuitively, one may
thus make use of the excessive norm of q by transforming the
required ‘amount’ of q into a, and redistributing its excessive
norm to the rest of p̃, or in other words by passing the exces-
sive norm of q on to the rest of p̃, giving rise to the name of
the approach. Formally, one achieves this by splittingMq into
a convex combination of two doubly stochastic matrices, i.e.,

Mq = α0Mq→a + α1Mq→b, (35)

where α0, α1 ≥ 0, α0 + α1 = 1, and Mq→a and Mq→b are
doubly stochastic matrices such that

Mq→a q∥q∥ = a∥a∥ , (36)

Mq→b q∥q∥ = f(b1, . . . ,bk), (37)

where f depends on the vectors bi. The main idea of this
approach is that if one chooses f and Mq→b in an appropriate
way, the Mri may potentially be chosen such that

Mri

ri∥ri∥ = bi∥bi∥ , i = 1, . . . , k, (38)

in order for p to transform into p̃ as desired. One way of
‘passing on the norm’ of q in this way, i.e. choosing f and
Mq→b, is to pass it to each bi individually

Mq→b = k∑
i=1

α̃i(1 +Πi)Mq→bi , (39)

with Mq→bi q∥q∥ = bi∥bi∥ , i = 1, . . . , k, (40)
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which implies f(b1, . . . ,bk) = ∑ki=1 α̃i
bi∥bi∥ , where the {α̃i}i

constitutes a probability distribution. However, this is not al-
ways possible as the condition q/∥q∥ ≻ bi/∥bi∥, necessary
for the existence of Mq→bi , cannot be satisfied in general. See
Appendix A.VI for details. One is therefore forced to pass the
norm of q in a more clever way. A good candidate is

Mq→b = k∑
i=1

α̃iMq→2bi , (41)

with Mq→2bi

q∥q∥ = (1 +Πi)bi
2∥bi∥ , i = 1, . . . , k. (42)

However, this separation of Mq into one part “passing on the
norm” from q to a and another part from q to the bi is not
strictly needed. One may instead only require the existence of
a doubly stochastic matrix Mq such that

Mqq = a + f̃(r1,b1, . . . , rk,bk), (43)

with

f̃(r1,b1, . . . , rk,bk) = k∑
i=1

(⌊ 2i
d
⌋ +1)−1(1− ∥ri∥∥bi∥)(1+Πi)bi.

(44)
Unfortunately, Eq. (43) is challenging to check, e.g., even con-
firming whether a + f̃(r1,b1, . . . , rk,bk) is a vector of non-
negative components is already complicated. In summary, the
approach requires checking the two following conditions:

(i) For any pair of vectors (ri,bi), there exists a doubly
stochastic matrix Mri such that

bi∥bi∥ =Mri

ri∥ri∥ , i = 0, . . . , k, (45)

while at the same time ∥q∥ ≥ ∥a∥, where a ∶= q(β′).

(ii) There exists a doubly stochastic matrix Mq such that

Mqq = a + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1(1 − ∥ri∥∥bi∥)(1 +Πi)bi, (46)

or the stronger version: ∥ri∥ ≤ ∥bi∥ for all i = 1, . . . , k
and there exist doubly stochastic matrices Mq→2bi , i =
1, . . . , k such that

Mq→2bi

q∥q∥ = (1 +Πi)bi

2∥bi∥ i = 1, . . . , k. (47)

Condition (i) indeed holds, and we thus state it below as
the following lemma, the proof of which is presented in Ap-
pendix A.VII.

Lemma 2. For any d-dimensional system with arbitrary
Hamiltonian, for any β′ < β, and for all i = 0, . . . , d − 1 we
have ∥q∥ ≥ ∥a∥ , (48)

ri∥ri∥ ≻ bi∥bi∥ . (49)

Given the above lemma and assuming that condition (ii)
also holds, one can prove the existence of STUs for all dimen-
sions by using the following majorisation relations. The ma-
jorisation relation (49) from Lemma 2 ensures the existence of
doubly stochastic matrices Mri which satisfy Mri ri/∥ri∥ =
bi/∥bi∥. To reach any thermal state with higher temperature,
i.e., p̃ = p(β′), we then need the existence of Mq such that

p(β′) = Mq q + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1 ∥ri∥∥bi∥(1 +Πi)bi, (50)

therefore compensating for the required norm of the vectors
associated to the subspace {Hri}d−1

i=1 . This is precisely what
is ensured by condition (ii).

However, since condition (ii) is in general cumbersome to
prove, one can check whether Eq. (47) holds instead. See
Appendix A.VIII for more details about how to prove the ex-
istence of STUs in general in this way. In the particular case
of d = 3, the strong version of condition (ii) can be reduced
to a (“norm passing”) requirement that we formulate in the
following lemma:

Lemma 3. In d = 3, for every choice of E1 and E2 with E2 ≥
E1 and for any β′ ≤ β, the following majorisation relation
holds:

q∥q∥ ≻ (1 +Π)b
2∥b∥ ∶= c∥c∥ . (51)

The proof of Lemma 3 is presented in Appendix A.IX. To-
gether, Lemmas 2 and 3 then confirm the existence of STUs
for the d = 3 case.

Now, let us examine the case d = 4. Consider a bipartite
system with equal local Hamiltonians H = ∑3

i=0Ei ∣ i ⟩⟨ i ∣ in
which the energy eigenvalues are ordered in increasing order
and E0 = 0. Following Eq. (17), the vectorised form of the
marginals for the initial uncorrelated thermal state is given by
p = q + r1 + r2 + r3 with

q = ⎛⎜⎜⎜⎝
p00

p11

p22

p33

⎞⎟⎟⎟⎠ , r1 =
⎛⎜⎜⎜⎝
p01

p12

p23

p30

⎞⎟⎟⎟⎠ , r2 =
⎛⎜⎜⎜⎝
p02

p13

p20

p31

⎞⎟⎟⎟⎠ , r3 =
⎛⎜⎜⎜⎝
p03

p10

p21

p32

⎞⎟⎟⎟⎠ = Πr1,

(52)
where ri is a shorthand for ri(β). Furthermore, we again de-
note the vector decomposition of any thermal state with higher
temperature β′ ≤ β as p(β′) = a +∑i bi with a ∶= q(β′) and
bi ∶= ri(β′). Unitaries on the LCSs that generate the same
marginals, according to Eq. (25), lead to the transformation

p↦ p̃ = Mq q + (11 +Π)Mr1r1 + 1

2
(11 +Π2)Mr2 r2, (53)

where the Mri are arbitrary doubly stochastic matrices. To
achieve a thermal marginal with higher temperature, one can
transform each ri to bi as prescribed by condition i and pass
the extra norm of the vector q as dictated by the stronger ver-
sion of condition (ii). This is possible at least under some
restrictions on the energy level spacings δi ∶= Ei+1 − Ei.
Let us phrase this statement more precisely in the follow-
ing Lemma 4, a detailed proof of which is presented in Ap-
pendix A.IX.
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Lemma 4. In d = 4, for every choice of the set {Ei}3
i=0 with

Ei+1 ≥ Ei and δi+1 ≤ δi and for any β′ ≤ β, the following
relations hold for i = 1,2:

q∥q∥ ≻ 1 +Πi

2

bi∥bi∥ , (54)

∥ri∥ ≤ ∥bi∥. (55)

With Lemma 4 at hand, we are ready to state the result
achieved for the d = 4 with this method.

Theorem 2: Existence of STUs in d = 4

In any 4-dimensional system, for every set of energy
eigenvalues {Ei}3

i=0 with Ei+1 ≥ Ei and δi+1 ≤ δi, and
for any β′ ≤ β, there exists a set of doubly stochastic ma-
trices {Mri}2

i=0 such that

p(β′) = Mq q+(11+Π)Mr1r1+ 1

2
(11+Π2)Mr2 r2, (56)

which implies the existence of STUs in d = 4 for symmet-
ric Hamiltonians with decreasing energy gaps.

Proof. The statement follows from Lemmas 2 and 4.
We have thus seen that the approach discussed in this sec-

tion does, at least partially, generalise to local dimension 4.
However, the proof of Theorem 2, which exploits the stronger
version of condition (ii) fails forE3 ≫ 1. Note that this failure
is not an artifact of even dimensions, but rather continues to
persist in subsequent higher dimensions. Still, the possibility
remains that above results can be generalised by proving the
weaker version of condition (ii).

III.3. Geometric approach

Our attempts to generalise the approaches of Secs. III.1
and III.2 to higher dimensions have shown that the problem
can be recast in terms of different sets of conditions. How-
ever, checking these conditions has proven to be increasingly
complex with growing dimension, and has thus only provided
partial results even for the case d = 4. We therefore now
turn to a third approach which at least provides a complete
proof for d = 4. This approach is centred around the geomet-
ric structure generated by doubly stochastic matrices. More
specifically, recall that the Schur-Horn theorem implies that
for any v ∈ Rn, the set of vectors obtained by applying the set
of unistochastic n×nmatrices to v is a convex polytope given
by the convex hull of all permutations of the entries of v, see,
e.g., Ref. [31]. Here, we can apply this idea to the vectors
q and ri and the matrices Mq and Mri , respectively, to gen-
erate matching diagonal marginals according to Eq. (25). In
other words, the set of all possible symmetric marginal vectors
reachable by unitaries that are block-diagonal with respect to
the chosen LCS decomposition is the polytope with vertices

given by the set of points

p̃(i0, i1, . . . , ik) = Π(i0)q + k∑
n=1

(⌊ 2n
d
⌋ + 1)−1(1 +Πn)Π(in)rn,

(57)

with ij ∈ {1,2, . . . , d!} for all j = 0, . . . , k with k as in
Eq. (21). Here, Π(i) for i = 1, . . . , d! are the possible per-
mutations of d elements. The question about the existence of
STUs is then equivalent to asking if the curve defined by the
set of points {p(β′)∣β ≥ β′ ≥ 0} is enclosed within the poly-
tope corresponding to the convex hull of the (d!)k+1 points
p̃(i0, i1, . . . , ik).

To answer this question, we then proceed in the following
way. First, we note that the d-component vectors p = (pi)
only have d − 1 independent entries due to the normalisation
condition ∑d−1

i=0 pi = 1. The problem can thus be reduced to
d−1 dimensions by choosing coordinates {xi}i=0,1,...,d−2 with

xn = (n + 1)pn+1 − n∑
i=0

pi, (58)

for n = 0,1, . . . , d − 2, while the additional last coordinate
xd−1 = −∑d−1

i=0 pi = −1 is fixed by normalisation and can
thus be disregarded. In these coordinates, the point obtained
for infinite temperature (β → 0) is the origin, p(β → 0) =(0,0, . . . ,0,−1), the point for vanishing temperature is p(β →∞) = (−1,−1, . . . ,−1) and all thermal states lie on a con-
tinuous curve connecting these points that is strictly confined
to negative coordinate regions, xi ≤ 0 ∀i. However, note
that there are points corresponding to reachable marginals that
have positive values for some of the new coordinates.

For any given initial temperature 1/β and dimension d, a
sufficient set of conditions for the inclusion of the curve de-
fined by the points {p(β′)∣β ≥ β′ ≥ 0} in the reachable poly-
tope is as follows:

(I) Inclusion of the vertices

v0 ∶= p(β) = (x0(β), x1(β), . . . , xd−3(β), xd−2(β),−1),
v1 ∶= (0, x1(β), . . . , xd−3(β), xd−2(β),−1),
v2 ∶= (0,0, x2(β) . . . , xd−3(β), xd−2(β),−1),⋮

vd−2 ∶= (0,0, . . . ,0, xd−2(β),−1),
vd−1 ∶= p(β → 0) = (0, . . . ,0,−1), (59)

in the polytope of achievable marginals.

(II) Inclusion of all points p(β′) with β′ ≤ β in the sim-
plex corresponding to convex hull of the set of vertices{vi∣ i = 0, . . . , d − 1}.

In general, confirming condition (II) is relatively straight-
forward, either by proving the positivity of the partial deriva-
tives ∂xm

∂xn
= (∂xn

∂β
)−1 ∂xm

∂β
≥ 0 and ∂2xm

∂x2
n

= ∂2xm
∂β2 −

(∂xm
∂β

)(∂xn
∂β

)−1 ∂2xn
∂β2 ≥ 0 (which we show explicitly for d = 4

in Appendix A.X), or by showing that all points p(β′) can be
written as a convex combination of the vertices (59), which
we prove in general for dimension d in Appendix A.X. Let us
therefore state condition (II) as the following lemma:
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(a) (b)

-1 1
x

-1

1

2

y

p(β)

p(β→0)

v1
(3)

~(6,1)p

p(β→∞)

FIG. 1. Polytope of reachable symmetric diagonal qutrit marginals. (a) The axes show the components pi (with i = 0,1,2) with respect
to the original basis {ei}i=0,1,2 and the simplex of all possible states (not necessarily reachable from a given state) is indicated by the dashed
blue triangle. The parameter values chosen for the illustration are β = 1.35E1 and E2 = 2E1. For these values, the family of thermal states
is shown as a solid purple curve from p(β → ∞) = (1,0,0)T to p(β → 0) = ( 1

3
, 1
3
, 1
3
)T . The initial state of the marginals is represented by

the point p(β) indicated by a blue arrow. The shaded blue area shows the polytope of diagonal reduced states with p̃A = p̃B that is reachable
by the application of a unistochastic matrix M on q in combination with a circulant unistochastic matrix M̃ applied to r. This polytope is the
convex hull of the points obtained from combining any (out of 6 possible) permutations of q (green arrows) with cyclic permutations (out of 3
possible) of r (orange arrows). We have chosen to restrict to cyclic permutations on r here to illustrate that this is enough for d = 3, whereas
this is no longer the case when d = 4. The red arrows between p(β), p̃(6,1), and p(β → 0) delineate a triangle, which we show contains
all points p(β′) that correspond to thermal states with temperatures higher than the original temperature, β > β′. (b) The polytope is shown
in terms of the independent coordinates x ≡ x0 = −p0 + p1 and y ≡ x1 = −p0 − p1 + 2p2 from Eq. (58). The vertex v(3)1 is located at the
intersection of the y axis with the line connecting p(β) and p̃(6,1).

Lemma 5. In the coordinates defined by Eq. (58), the curve
of thermal states at inverse temperature β′ ≤ β satisfies con-
dition (II) for all β in all dimensions d.

Besides satisfying condition (II), it is also easy to see that
the vertices v0 and vd−1 from condition (I), which represent
the initial thermal state and maximally mixed state in the new
coordinates, are reachable for all dimensions. However, show-
ing the inclusion of the rest of the points in (I) is increas-
ingly difficult, due to the rapidly growing number of possible
polytope vertices and the difficulty of visualizing the (d − 1)-
dimensional polytope beyond d = 4. In the following, we
prove that condition (I) holds (at least) in the particular cases
of d = 3 and d = 4. See also Fig. 1 for an illustration in dimen-
sion 3 and Appendices A.XI and A.XII for further details.

Theorem 3: Geometric approach in d = 3 and d = 4

In d = 3 and d = 4 systems, for every choice of Hamilto-
nians and initial inverse temperature β, the set of thermal
states with β′ ≤ β is contained within the polytope with
vertices defined in Eq. (59), which proves the existence of
STUs in the symmetric two-qutrit and two-quqart cases.

Proof. For d = 3 we have to prove that the point v(3)1 =(0, x1(β),−1) can be reached with transformations of the
type p↦ p̃ =Mqq+ (11+Π)Mrr for some doubly stochastic
3 × 3 matrices Mq and Mr, where q and r are as in Eq. (29).
This is indeed the case, e.g., for Mr = 11 being the identity
matrix and

Mq = ⎛⎜⎝
m 1 −m 0

1 −m m 0
0 0 1

⎞⎟⎠ , (60)

with m = 1 − 1/[2(p0 + p1)], which is a doubly stochas-
tic matrix since p0 + p1 ≥ 1/2 for d = 3. Note that, ge-
ometrically, this choice of Mq and Mr represents a convex
combination of the points p(β) and p̃(6,1) shown in Fig. (1).
For this transformation, we have p̃ = ∑2

i=0 p̃iei, where the
components with respect to the original basis {ej}j=0,1,2 are
p̃0 = p̃1 = (p0 +p1)/2 and p̃2 = p2, which means that the com-
ponents of p̃ with respect to to the new coordinates of Eq. (58)
are p̃ = (0,2−3(p0+p1),−1)T = (0, x1(β),−1)T = v(3)1 . This
concludes the proof for d = 3.

For d = 4, we have to show that the two points v(4)1 =(0, x1(β), x2(β),−1) and v(4)2 = (0,0, x2(β),−1) can be
reached with transformations of the type p ↦ p̃ = Mqq +
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(11+Π)Mr1r1 + 1
2
(11+Π2)Mr2r2 for some doubly stochastic

4 × 4 matrices Mq , Mr1 , and Mr2 , where q and r1 are as in
Eq. (52).

The point v(4)1 can be reached with the equivalent of the
transformation used to reach v(3)1 above, that is, using Mr1 =
Mr2 = 11 and

Mq =
⎛⎜⎜⎜⎝

m 1 −m 0 0
1 −m m 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , (61)

with m = 1−1/[2(p0 +p1)], which is again doubly stochastic
since p0 + p1 ≥ 1/2 also holds for d = 4.

To prove that v(4)2 can be reached, one can see that it can be
obtained as a convex combination of (at most) 5 of the vertices
in Eq. (57), as we show in detail in Appendix A.XII.

For higher dimensions, as we already mentioned, the prob-
lem becomes more and more complex, but one can try to build
a recursive approach based on the above lower dimensional
proofs and borrowing some ideas from the “passing on the
norm” approach. In particular, we outline a possible route
for such an approach for the case d = 5 in Appendix A.XIII,
where we can show the existence of STUs for d = 5 for a
subset of all possible Hamiltonians.

IV. CONCLUSIONS

We have investigated the generation of correlations in ini-
tially thermal, uncorrelated systems. For two identical d-
dimensional systems, the conversion of energy into correla-
tions as measured by the mutual information is optimal when
the final state can be reached unitarily and both marginals
of the final state are thermal at the same effective tempera-
ture. For any given system, the possibility of such an optimal
conversion for all input energies (or desired amout of correla-
tions) hence hinges upon the existence of symmetrically ther-
malizing unitaries for all initial temperatures and effective lo-
cal final temperatures. This gives rise to the central question:
Is it possible to find unitaries (STUs) transforming thermal
marginals to other thermal marginals with higher tempera-
ture for any local Hamiltonian?

In asymmetric cases, where the two local Hamiltonians are
different, this is generally not possible, as we have shown via
constraints on the subsystem entropies. For the symmetric
case (equal local Hamiltonians), we have provided a frame-
work based on locally classical subspaces in d×d-dimensional
systems to address this question beyond previous partial re-
sults for equally gapped Hamiltonians [11]. In particular, we
have shown that STUs exist for all (locally matching) Hamil-
tonians in local dimensions d = 3 and d = 4, and we conjecture
that STUs exist in all local dimensions.

To showcase the complexity and interesting features of the
problem, as well as to provide further guidance for proving
(or disproving) our conjecture, we have discussed three ap-

proaches operating within our framework. Using the “ma-
jorised marginals” approach we showed for two qutrits (d = 3)
that, not only do STUs generically exist for any local Hamilto-
nian at any temperature, but also it is indeed possible to sym-
metrically reach any marginal that is majorised by the initial
marginals. However, since this approach fails to be gener-
alised to higher dimensions, we introduced two alternative ap-
proaches that we call “passing on the norm” and “geometric
approach”, respectively. Both allow proving the existence of
STUs in the two-qutrit case. Using the “passings on the norm”
approach, we were further able to show that STUs exist for
d = 4 when the local Hamiltonians satisfy specific conditions
on their energy gaps, i.e., δi+1 ≤ δi. Finally, we have used the
“geometric” method to prove the existence of STUs in local
dimension d = 4 for all symmetric Hamiltonians, and we for-
mulate a set of conditions to extend this approach to higher
dimensions.

Our work addresses a fundamental question in quantum
thermodynamics, whether correlations can always be cre-
ated energetically optimally, or not. Besides addressing a
question about the conversion between thermodynamic and
information-theoretic resources, the problem at hand can be
considered a part of the quantum marginal problem. What
kind of marginals can be unitarily reached from (are compati-
ble with) a particular global state? The framework we put for-
ward in terms of locally classical subspaces is more general
than symmetric marginal transformations and also goes be-
yond mere majorisation relations of marginal eigenvalues. As
such, it may also be relevant for other variants of this question,
such as addressing the catalytic entropy conjecture of [34].
Just using one of the many possible such subspaces, we man-
aged to resolve our main question for dimensions d = 3 and
d = 4 and it would be interesting to know if all marginal eigen-
value distributions could potentially be reached by operating
in locally classical subspaces only. Finally, a significant chal-
lenge lies in specializing from the creation of arbitrary corre-
lations to generating entanglement [11, 12, 29, 35].
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nio Aćın, “Thermodynamic cost of creating correlations,” New
J. Phys. 17, 065008 (2015), arXiv:1404.2169.

[12] David Edward Bruschi, Martı́ Perarnau-Llobet, Nicolai Friis,
Karen V. Hovhannisyan, and Marcus Huber, “The thermody-
namics of creating correlations: Limitations and optimal proto-
cols,” Phys. Rev. E 91, 032118 (2015), arXiv:1409.4647.

[13] Felix C. Binder, Sai Vinjanampathy, Kavan Modi, and John
Goold, “Quantacell: Powerful charging of quantum batteries,”
New J. Phys. 17, 075015 (2015), arXiv:1503.07005.

[14] Sahar Alipour, Fabio Benatti, Faraj Bakhshinezhad, Maryam
Afsary, Stefano Marcantoni, and Ali T. Rezakhani, “Correla-
tions in quantum thermodynamics: Heat, work, and entropy
production,” Sci. Rep. 6, 35568 (2016), arXiv:1606.08869.

[15] Manabendra Nath Bera, Arnau Riera, Maciej Lewenstein, and
Andreas Winter, “Generalized Laws of Thermodynamics in
the Presence of Correlations,” Nat. Commun. 8, 2180 (2017),
arXiv:1612.04779.

[16] Markus P. Müller, “Correlating thermal machines and the sec-
ond law at the nanoscale,” Phys. Rev. X 8, 041051 (2018),
arXiv:1707.03451.

[17] Manabendra Nath Bera, Arnau Riera, Maciej Lewenstein,
Zahra Baghali Khanian, and Andreas Winter, “Thermodynam-
ics as a Consequence of Information Conservation,” Quantum
3, 121 (2019), arXiv:1707.01750.

[18] Facundo Sapienza, Federico Cerisola, and Augusto J.

Roncaglia, “Correlations as a resource in quantum thermody-
namics,” Nat. Commun. 10, 2492 (2019), arXiv:1810.01215.

[19] Sania Jevtic, David Jennings, and Terry Rudolph, “Quantum
mutual information along unitary orbits,” Phys. Rev. A 85,
052121 (2012), arxiv:1112.3372.

[20] Sania Jevtic, David Jennings, and Terry Rudolph, “Maxi-
mally and Minimally Correlated States Attainable within a
Closed Evolving System,” Phys. Rev. Lett. 108, 110403 (2012),
arxiv:1110.2371.

[21] F. Clivaz, R. Silva, G. Haack, J. Bohr Brask, N. Brunner, and
M. Huber, “Unifying paradigms of quantum refrigeration: fun-
damental limits of cooling and associated work costs,” Phys.
Rev. E 100, 042130 (2019), arXiv:1710.11624.

[22] Lluis Masanes and Jonathan Oppenheim, “A general derivation
and quantification of the third law of thermodynamics,” Nat.
Commun. 8, 14538 (2017), arXiv:1412.3828.

[23] Henrik Wilming and Rodrigo Gallego, “Third Law of Ther-
modynamics as a Single Inequality,” Phys. Rev. X 7, 041033
(2017), arXiv:1701.07478.

[24] Fabien Clivaz, Ralph Silva, Géraldine Haack, Jonatan
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APPENDICES

In these appendices, we provide detailed proofs of the
lemmas supporting the main theorems, as well as additional
detailed calculations and counterexamples mentioned in the
main text. In Appendix A.II, we investigate the maximal
amount of correlations unitarily achievable for a fixed amount
of energy that can be created between two arbitrary asymmet-
ric systems initialised in a pure state. In Appendix A.III, we
propose a scheme to transform finitely many copies of bi-
partite thermal states with thermal marginals to states with
symmetric thermal marginals at a higher temperature. In Ap-
pendix A.IV, we give a detailed proof of Lemma 1. We also
discuss why Lemma 1 cannot be generalised to higher dimen-
sions in Appendix A.V. In Appendix A.VI, we show via coun-
terexample that it is in general not possible to map the nor-
malised versions of the vectors qi to the vectors ri by doubly
stochastic matrices. In Appendix A.VII, we present a detailed
proof of Lemma 2 that confirms that condition (i), used in
the “passing on the norm” approach, holds in general. In Ap-
pendix A.VIII, we discuss how one can show the existence
of STUs via the stronger version of condition (ii). In Ap-
pendix A.IX, by proving Lemma 3 and Lemma 4, we com-
plete the proof of the existence of STUs via this approach in
d = 3 and under specific constraints on the energy gaps in
d = 4. Then, we turn our attention to the geometric approach
and show the monotonicity and convexity of the thermal curve
in Appendix A.X. The detailed proofs of the existence of
STUs using the geometric approach in dimensions 3 and 4
are presented in Appendix A.XI and Appendix A.XII, respec-
tively. Finally, we discuss the possibility of generalising the
geometric method to higher dimensions in Appendix A.XIII.

A.I. Upper bound on correlation

In this appendix, we show that if STUs exist in general,
i.e., in particular for the desired temperature, they provide an
upper bound for the amount of correlation that can be achieved
unitarily. Using the same notation as in the main text, we are
interested in solving the problem

max
U

S(%̃A)+S(%̃B) s.t. Tr(%̃AHA)+Tr(%̃BHB) ≤ c. (A.1)

This can be rewritten as

max
U

S(%̃A ⊗ %̃B) (A.2)

s.t. Tr(%̃A ⊗ %̃B(HA ⊗ 1 + 1⊗HB)) ≤ c.
According to Jaynes’ principle, the maximum is obtained for

τA(β̄) ⊗ τB(β̄), (A.3)

where β̄ is chosen such that

Tr(τA(β̄) ⊗ τB(β̄)(HA ⊗ 1 + 1⊗HB)) = c. (A.4)

This solution can be found using Lagrange multipliers by con-
sidering the n×nmatrix %AB as an vector with n2 components.

We therefore have as desired

max
U

S(%̃A) + S(%̃B) s.t. Tr(%̃AHA) + Tr(%̃BHB) ≤ c.
≤ S(τA(β̄)) + S(τB(β̄)), (A.5)

with Tr(τA(β̄)HA) + Tr(τB(β̄)HB) = c.
A.II. Maximal amount of correlation for a pure state in the

asymmetric case

Here, we discuss and solve the problem of maximising the
correlations under an energy constraint in the asymmetric case
with an initial pure state. That is, we want to solve

max
%̃A,%̃B

S(%̃A) + S(%̃B), (A.6)

subject to the constraint Tr(%̃AHA) + Tr(%̃BHB) ≤ c, where

%̃A = d−1∑
i=0

pi ∣ϕAi ⟩⟨ϕAi ∣ , %̃B = d−1∑
i=0

pi ∣ϕBi ⟩⟨ϕBi ∣ , (A.7)

with pi ≥ 0 for i = 0, . . . , d − 1, ∑d−1
i=0 pi = 1, d = min{dA, dB},

and where {∣ϕAi ⟩}dA−1
i=0 and {∣ϕBi ⟩}dB−1

i=0 are orthonormal
bases of HA and HB, respectively. Without loss of general-
ity we then assume d = dA. Note that S(%̃A) = S(%̃B) and
%̃B = U%̃AU †, where we write U = ∑d−1

i=0 ∣ϕBi ⟩⟨ϕAi ∣ (in a slight
abuse of notation) such that the problem may be rewritten as

max
%,U

S(%) s.t. Tr[%(HA +U †HBU)] ≤ c, (A.8)

where we have dropped the tilde and subscriptA on % for ease
of notation. To solve this problem we consider the converse
problem

min
%,U

Tr[%(HA +U †HBU)] s.t. S(%) = κ, (A.9)

and show that (at least a family of) optimal points of (A.9) are
optimal points of (A.8). To simplify the notation further let us
write

HA = d−1∑
i=0

EA

i ∣ i ⟩⟨ i ∣
A

(A.10)

HB = dB−1∑
i=0

EB

i ∣ i ⟩⟨ i ∣
B
, (A.11)

with EA

i ≤ EA

i+1 and EB

i ≤ EB

i+1.

Proposition 1. The pair (%opt(κ), Uopt), given by

Uopt ∶= d−1∑
i=0

∣ i ⟩
B
⟨ i ∣

A
, (A.12)

%opt(β(κ)) ∶= e−β(κ)H̃
Z̃

, (A.13)

where Z̃ = Tr(e−β(κ)H̃) and H̃ = ∑d−1
i=0 (EA

i +EB

i ) ∣ i ⟩⟨ i ∣A, is
a solution of the minimisation in (A.9).
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Proof. Denoting the spectrum of % as λ% = (λ0, . . . , λd−1), we
first show that (%opt(β(κ)), Uopt) is a solution of the follow-
ing minimisation problem

min
λ

( min
% s.t. λ%=λTr(%HA) + min

U,% s.t. λ%=λTr(U%U †HB)) ,
(A.14)

subject to the constraint H(λ) = κ, where H(λ) denotes the
Shannon entropy of the probability distribution λ. Since all
density matrices of a given spectrum are unitarily related we
have

min
% s.t. λ%=λTr(%HA) = min

V
Tr(V diag{λ%}V †HA), (A.15)

where the minimisation on the right-hand side is over all uni-
taries V . The passive state with spectrum λ is well-known
to solve this minimisation. Adopting the notation v↓ = (v↓i)
to denote the vector obtained by arranging the components of
the vector v = (v1, . . . , vn) in decreasing order, i.e., such that
v↓1 ≥ v↓2 ≥ ⋅ ⋅ ⋅ ≥ v↓n, we thus have

min
% s.t. λ%=λTr(%HA) = d−1∑

i=0

λ↓iEA

i . (A.16)

For the second minimisation problem in (A.14), note that
since {∣ϕAi ⟩}dA−1

i=0 and {∣ϕBi ⟩}dB−1
i=0 are orthonormal bases, the

matrix representation ofU can be extended to a unitary dB×dB
matrix V . Similarly, the matrix representation of % can be
extended to a positive dB × dB matrix %̄ by padding it with
zeroes. With this we have

min
U,% s.t. λ%=λTr(U%U †HB) ≥ min

V,%̄ s.t. λ%̄=(λ,0,...,0)Tr(V %̄V †HB).
(A.17)

Again the passive state with spectrum (λ,0, . . . ,0) solves the
right-hand side of (A.17) and we obtain

min
V,%̄ s.t. λ%̄=(λ,0,...,0)Tr(V %̄V †HB) = d−1∑

i=0

λ↓iEB

i . (A.18)

This solution is in fact also an attainable solution of the left-
hand side of (A.17). Hence

min
U,% s.t. λ%=λTr(U%U †HB) = d−1∑

i=0

λ↓iEB

i . (A.19)

We have therefore reduced the minimisation problem
of (A.14) to solving

min
λ

d−1∑
i=0

λ↓i(EA

i +EB

i ), s.t. H(λ) = κ, ∑
i

λ↓i = 1. (A.20)

This problem, in turn, can be solved by means of Lagrange
multipliers, which yields

λ↓i = e−β(EAi +EBi )
∑d−1
i=0 e

−β(EAi +EBi ) , (A.21)

which is precisely what is delivered by the solution(%opt(β(κ)), Uopt).
We can further check that for every κ ∈ [0, ln(d)] there ex-

ists a unique β ∈ [0,∞] such that H(λ%opt) = S(%opt(β)) =
κ, i.e., that the notation β(κ) is well defined and can be un-
derstood as a function. This can be seen from

S(%opt(0)) = ln(d), (A.22)
S(%opt(∞)) = 0, (A.23)
d

dβ
S(%opt(β)) = β(Tr(%H̃)2 − Tr(%H̃2)) < 0, ∀β ∈ (0,∞).

(A.24)

Strictly speaking, the last line is not valid when H̃ ∝ 1, but
in that case one can straightforwardly check that (Uopt,

1
d
)

solves our original problem (A.8) for any allowed c. We hence
(tacitly) discard it from the start.

Having established this fact about (%opt(β(κ)), Uopt), let(%,U) be such that S(%) = κ. Then % has some spectrum{µ0, . . . , µd−1}. From the above we thus have

Tr(%HA) + Tr(U%U †HB) ≥ d−1∑
i=0

µ↓iEA

i + d−1∑
i=0

µ↓iEB

i (A.25)

≥ d−1∑
i=0

e−β(κ)(EAi +EBi )
∑d−1
i=0 e

−β(κ)(EAi +EBi ) (EA

i +EB

i )
= Tr(%opt(β(κ))HA) + Tr(Uopt%opt(β(κ))U †

optHB),
which proves our claim, because S(%opt(β(κ))) = κ.

Now let us define the function

f(κ) = Tr(%opt(β(κ))HA) + Tr(Uopt%opt(β(κ))U †
optHB).

(A.26)
We can then establish the following proposition.

Proposition 2. If f(κ1) < f(κ2) then κ1 < κ2.

The above is saying that if f has an inverse then that inverse
is strictly monotonically increasing. This is indeed how the
proof proceeds.

Proof. First, note that we have

d

dκ
f(κ) = d

dβ
f(β)dβ

dκ
= d

dβ
f(β) ( d

dβ
S(%opt(β))−1

.

(A.27)

Further, we have already seen that

d

dβ
S(%opt(β) = β(Tr(%H̃)2 − Tr(%H̃2)) < 0. (A.28)

Similarly one calculates

d

dβ
f(β) = (Tr(%H̃)2 − Tr(%H̃2)) < 0. (A.29)

So for κ ∈ (0, ln(d)) we have

d

dκ
f(κ) = 1

β
> 0. (A.30)
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This proves that f is strictly monotonically increasing. It
therefore has an inverse f−1 that is also strictly monotonically
increasing which proves our claim.

We are now ready to solve the maximisation in (A.8).

Proposition 3. There is a (unique) β such that(%opt(β), Uopt) is a solution of (A.8).

Proof. First, if c ≥ 1
d ∑d−1

i=0 E
A

i + EB

i , then (%opt(0), Uopt) is
the sought after solution, because

H(( 1
d
, . . . , 1

d
)) = S(%opt(0)) ≥ S(%) ∀% , (A.31)

and Tr(%opt(0)H̃) ≤ c. Second, if c ≤ 1
d ∑d−1

i=0 E
A

i +EB

i then

d

dβ
f(β) < 0 (A.32)

ensures that there exists a (unique) β, say β̄, such that

f(β̄) = Tr(%opt(β̄)H̃) = c. (A.33)

Let us now prove that (%opt(β̄), Uopt) is the desired solution
in this case. Consider a pair (%1, U1) such that

Tr(%1HA) + Tr(U1%1U
†
1HB) ≤ c = Tr(%opt(β̄)H̃). (A.34)

Let us further consider %opt(β(κ)), the solution of (A.9) and
choose κ = S(%1). Then it holds that

Tr(%opt(β(κ))H̃) ≤ Tr(%1HA) + Tr(U1%U
†
1HB)≤ Tr(%opt(β̄)H̃), (A.35)

which, using Proposition (2), implies

S(%opt(β(κ)) ≤ S(%opt(β̄)). (A.36)

But S(%opt(β(κ)) = S(%1) such that

S(%1) ≤ S(%opt(β̄)). (A.37)

A.III. Correlating finitely many copies

Here we discuss a protocol that can be applied to n copies
of the initial state, i.e., τA(β)⊗n ⊗ τB(β)⊗n, to increase the
temperature of the marginals in cases where STUs for single
copies exist for small temperature differences, but are not
attainable for larger temperature differences. For n copies,
the protocol consists of n consecutive steps. In each step,
a fixed STU achieving some finite temperature increase is
applied to different LCSs that correspond to particular pairs
of subsystems, such that for i, j = 1, . . . , n, each subsystem
Ai interacts with one and only one subsystem Bj , and no
subsystem interacts again with a subsystem it has previously
interacted with. This ensures that all marginals are left
diagonal and thermal after each step, and leads to a step-wise
increase in the temperature of the marginals. In particular, in

the jth step the unitary is applied to the subsystems Ai and
Bi+j−1 mod(n). This construction guarantees that the tensor
product structure of thermal states is preserved for each pair,
i.e., τA(βj) ⊗ τB(βj) where βj denotes the effective local in-
verse temperature after the jth step. Furthermore, this means
that in each step the STU can be applied, as the marginals are
in a thermal state with the same temperature and moreover,
product to each other. While this protocol ensures that the
desired structures are preserved, the necessary conditions for
the protocol to achieve arbitrary final temperatures are still
part of ongoing research. In general the question remains,
whether it is possible to reach any arbitrary temperature
difference, β′ < β, within finitely many steps. This discussion
contrasts the proof of the existence of STUs in the asymptotic
case, discussed in Sec. II.2.3.

To illustrate the protocol, let us illustrate the case of n = 4
copies here. In the following, each dot reprsents a subsystem
and the application of STUs is denoted by lines connnecting
pairs of subsystems. Initially one is confronted with the fol-
lowing situation.

A4 B4

A3 B3

A2 B2

A1 B1

In the first step, we connect subsystems corresponding to the
same copy, i.e., Ai and Bi.

A4 B4

A3 B3

A2 B2

A1 B1

As specified, we are now in the situation where we have
slightly decreased the inverse temperature of the marginals to
τ(β1). We now apply a unitary to the subsystems Ai and
Bi+1 mod(n), further decreasing the inverse temperature of the
marginals.

A4 B4

A3 B3

A2 B2

A1 B1
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In the third step, the subsystems Ai and Bi+2 mod(n) are con-
nected.

A4 B4

A3 B3

A2 B2

A1 B1

Lastly, we connect Ai and Bi+3 mod(n) as prescribed.

A4 B4

A3 B3

A2 B2

A1 B1

We have now used the four copies of the initial state, to in-
crease the correlations between the two sides step by step,
while retaining the product structure of the thermal marginals,
arriving at the final reduced states ρA/B = τ(β4)⊗4 for the
subsystems A and B.

A.IV. Proof of Lemma 1

In this section, we will first show that for any 3 × 3 doubly
stochastic matrixM , there exists another 3×3 doubly stochas-
tic matrix M̃ such that M(1 + Π) = (1 + Π)M̃ , a statement
we called Lemma 1 in the main text.

Proof of Lemma 1. In general, all doubly stochastic matrices
can be written as convex combinations of permutation matri-
ces as the following

M = d!∑
i=1

αiΠ(i), (A.38)

where Π(i) indicate permutation matrices in dimension d, and∑i αi = 1. Since we need to show that the statement is true
for any doubly stochastic matrix M , it is sufficient to prove
that the statement is true for M being a permutation matrix.
In the following we will just focus on dimension 3. In this
dimension there are 3! = 6 permutation matrices where we
collect the cyclic permutations Π(1)

C = 1, Π(2)
C = Π, Π(3)

C = Π2,
and anticyclic permutations

Π(1)
AC = ⎛⎜⎝

1 0 0
0 0 1
0 1 0

⎞⎟⎠ , Π(2)
AC = ⎛⎜⎝

0 1 0
1 0 0
0 0 1

⎞⎟⎠ , Π(3)
AC = ⎛⎜⎝

0 0 1
0 1 0
1 0 0

⎞⎟⎠ ,
(A.39)

in a particular order, i.e.,

Π(1) = Π(1)
C , Π(2) = Π(1)

AC, Π(3) = Π(3)
C ,

Π(4) = Π(3)
AC, Π(5) = Π(2)

C , Π(6) = Π(2)
AC. (A.40)

where Π(1), Π(5), and Π(3) trivially commute with Π(5) = Π. It
is further straightforward to show that

Π(6)(1 +Π(5)) = (1 +Π(5))Π(2)
Π(2)(1 +Π(5)) = (1 +Π(5))Π(4) (A.41)
Π(4)(1 +Π(5)) = (1 +Π(5))Π(6).

For any 3 × 3 doubly stochastic matrix M given in the form
of Eq. (A.38), by using Eq. (A.41), one may thus find a 3 × 3
doubly stochastic matrix M̃ of the form

M̃ = α1 Π(1) + α3 Π(3) + α5 Π(5)
+ α2 Π(4) + α4 Π(6) + α6 Π(2), (A.42)

which satisfies the required condition.

A.V. Generalisation of the majorised marginals approach

One of the approaches to investigating the existence of the
unitaries mentioned in Question 1 is to generalise the ‘ma-
jorised marginals approach’ of Sec. III.1. This approach ap-
pears to be promising because of its simplicity and utility. For
such a generalisation to higher dimensions to be successful,
Eq. (57) would demand to prove the following claim.

Claim 1. For any d × d doubly stochastic matrix M , with
d ≥ 4, there exists a doubly stochastic matrix M̃ such that

M(1 +Πi) = (1 +Πi)M̃i ∀i ∈ {1, . . . , ⌊d
2
⌋}. (A.43)

Note that by permuting the chosen basis vectors in a par-
ticular manner, (1 + Πi) can always be written in the form
of (1 + Π). Additionally, we know that such a transforma-
tion of the basis transforms any doubly stochastic matrix to
another doubly stochastic matrix. Since Eq. (A.43) should be
true for any doubly stochastic matrixM , these two facts imply
that Eq. (A.43) can be reduced to showing that for any dou-
bly stochastic d × d matrix M there exists a doubly stochastic
matrix M̃ such that

M(1 +Π) = (1 +Π)M̃. (A.44)

Using a counterexample, we show that Claim 1 does not hold
in general for dimensions d ≥ 4. In particular, we construct a
counterexample in dimension 4.

Counterexample to Claim 1. Let

M = ⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0.

⎞⎟⎟⎟⎠ . (A.45)
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As we will now show, there exists no doubly stochastic M̃
such that M(1+Π) = (1+Π)M̃ . To do so, we first calculate

M(1 +Π) = ⎛⎜⎜⎜⎝
1 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0

⎞⎟⎟⎟⎠ . (A.46)

We are then interested in determining whether this can be
equal to (1 + Π)M̃ for some M̃ , with elements mij ≥ 0,
for i, j = 0, . . . ,3 such that each column and row sums to 1.
From the first row of (1 + Π)M̃ , we obtain m00 +m30 = 1,
which implies m10 = m20 = 0, m01 = m31 = 0, and
m02 = m32 = 0, and further we obtain m03 +m33 = 1, which
implies m13 =m23 = 0. Thus, M̃ must be of the form

M̃ = ⎛⎜⎜⎜⎝
m00 0 0 m03

0 m11 m12 0
0 m21 m22 0
m30 0 0 m33

⎞⎟⎟⎟⎠ . (A.47)

Then, from the second row of (1 +Π)M̃ we obtain m00 = 0,
implyingm30 = 1, as well asm11 = 0, which impliesm21 = 1.
Moreover, we have m12 = 1, which means m22 = 0, while
m03 = 1 suggests m33 = 0. We hence have

M̃ = ⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠ . (A.48)

But since ((1 +Π)M̃)31 = 0 ≠ (M(1 +Π))31 = 0 we arrive
at a contradiction.

Since Lemma 1 does not hold in general, one can try to
relax it to a weaker statement which is still suitable for our
purposes. One way to do so is to demand that an equivalent
of Eq. (A.44) holds only when applied to (certain) vectors, in
the spirit of the observation that although the set of doubly
stochastic matrices does not coincide with that of unistochas-
tic ones, given a vector v with nonnegative components and a
doubly stochastic matrix M , there is yet a unistochastic MU

such that Mv = MUv. Thus, we investigate whether the fol-
lowing statement is true or not:

Claim 2. Given a vector v of nonnegative components and a
doubly stochastic matrix M , there exists a doubly stochastic
matrix M̃v , which may depend on v, such that

M(1 +Π)v = (1 +Π)M̃vv. (A.49)

The relaxation being clearly that now M̃ is allowed to
depend on v. Unfortunately, the previous counterexample
carries over to Claim 2, as we shall see.

Counterexample to Claim 2. Let us consider M as in
Eq. (A.45) and let v = (1,0,0,0)T . Then we have

M(1 +Π)v = (1, 0, 1, 0)T . (A.50)

We then want to know if this equals (1+Π)M̃vv for some M̃v

with elements mij ≥ 0, i, j = 0, . . . ,3 such that each column
and row sums to 1. We obtain

(1 +Π)M̃vv = ⎛⎜⎜⎜⎝
m00 +m30

m00 +m10

m10 +m20

m20 +m30

⎞⎟⎟⎟⎠ . (A.51)

Comparing this with Eq. (A.50), we have m00 +m30 =m10 +
m20 and m20 +m30 = m00 +m10, which yields m30 = m10,
and concurrently m00 +m30 = 0 and m00 +m30 = 1, which
means we arrive at a contradiction.

A.VI. Counterexample for majorisation relations

Here, via counterexample, we show that the following
claim (discussed in Sec. III.2) does not hold in general:

Claim 3. The relation q∥q∥ ≻ bi∥bi∥ holds ∀ d ≥ 2 and β′ ≤ β.

Counterexample to Claim 3. Consider the case where the
last eigenvalue of the local Hamiltonian is infinitely large,
Ed−1 →∞. In this case, we know that for a thermal state with
any finite temperature, the corresponding probability weight
vanishes, pd−1(β) → 0. Due to the definitions of the vec-
tors q and ri [Eq. (17)], it is clear that pd−1(β) contributes
to one element of the vector q, i.e., to (q)d−1 = p2

d−1, and
two elements of the vector ri, (ri)d−1−i = pd−1−i pd−1 and(ri)d−1 = pd−1pd−1+i. Hence, the vectors q and bi = ri(β′)
have d − 1 and d − 2 nonzero elements, respectively. Now
recalling from majorisation theory that no vector can be ma-
jorised by a vector with higher rank one can see that Claim 3
does not hold.

A.VII. Proof of Lemma 2

Here, we present the proof of Lemma 2 for any d-
dimensional system, which ensures that condition (i) holds in
general.

Proof of Eq. (48) in Lemma 2. To prove that Eq. (48) holds,
we need to show that for any β > β′, g(β) ∶= ∥q∥ is greater
than g(β′) = ∥a∥ in d-dimensional systems. To achieve this,
one may use the positivity of the first derivative of the function
g(β). We therefore calculate

∂β∥q∥ = ∂β( ∑i e−2βEi

∑m,n e−β(Em+En) ) (A.52)

= 1
z(β)4 ∑

i,m,n

(Em +En − 2Ei)e−β(2Ei+Em+En)
= 2

z(β)3 ∑
i,m

(Em −Ei)e−β(2Ei+Em)
= 2

z(β)3 ∑
m> i [(Em −Ei)e−β(2Ei+Em)

+ (Ei −Em)e−β(Ei+2Em)]
= 2
z(β)3 ∑

m> i(Em −Ei)(e−β(2Ei+Em) − e−β(Ei+2Em)).
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Without loss of generality, we have ordered the energy eigen-
values in increasing order, Ei+1 ≥ Ei. Then, for any
pair (m, i) with m > i, we know that (e−β(2Ei+Em) −
e−β(Ei+2Em)) is nonnegative, implying ∂β∥q∥ ≥ 0. Also note
that the last inequality is strict unless Ei = Em for all m > i
implying H ∝ 1 for which the problem is already solved. For
all practical purposes, the inequality is therefore strict.

Proof of Eq. (49) in Lemma 2. Using our convention of LCSs,
see Sec. II.2.1, we have

ri ∶= d−1∑
j=0

pj j+i ej and bi ∶= d−1∑
j=0

p′j j+i ej , (A.53)

where pj j+i(β) ∶= e−β(Ej+Ej+i)/Z(β)2 and p′j j+i ∶=
pj j+i(β′). We then calculate

ri∥ri∥ = d−1∑
j=0

pj,j+i∑d−1
k=0 pk k+i

ej = d−1∑
j=0

e−β(Ej+Ej+i)
∑d−1
k=0 e

−β(Ek+Ek+i) ej

= d−1∑
j=0

e−βAj
∑d−1
k=0 e

−βAk ej , (A.54)

where Aj ∶= Ej + Ej+i for all j = 0, . . . , d − 1. The last ex-
pression is nothing else than the vectorised form of a thermal
state at inverse temperature β with respect to the Hamiltonian∑d−1
j=0 Aj ∣j ⟩⟨j ∣. Since the vector of diagonal entries of any

thermal state majorises the vectorised diagonal of any thermal
state (with respect to the same Hamiltonian) with lower in-
verse temperature β′ < β, which is nothing else than bi/∥bi∥,
Eq. (49) holds, which concludes the proof.

A.VIII. The existence of STUs with the stronger version of
condition (ii)

In this section, we will show how one can prove the exis-
tence of the STUs if condition (i) and the stronger version of
condition (ii) from Sec. III.2 hold.

condition (i) ensures that there exist doubly stochastic ma-
tricesMri which transform ri/∥ri∥ to bi/∥bi∥ and also q/∥q∥
to a/∥a∥, i.e.,

Mri

ri∥ri∥ = bi∥bi∥ for i = 0, . . . , k. (A.55)

Using Eqs. (25) and (A.55), the marginals then become

p̃ =Mqq + k∑
i=1

(⌊ 2i
d
⌋ + 1)−1(1 +Πi) ∥ri∥∥bi∥bi. (A.56)

To reach a thermal state with higher temperature, one can
compensate the required norm of (11 + Πi)bi by extra norm
from the vector q. To achieve that, we need to have ∥q∥ ≥ ∥a∥,
which is ensured by condition (i). In addition, another require-
ment for shifting the norm is the existence of doubly stochas-
tic matricesMq→2bi to transform q/∥q∥ to (11+Πi)bi/2∥bi∥.

Due to the HLP theorem, condition (ii) ensures that such ma-
trices exist. Therefore, Mq can be written as

Mq = α0Mq→a + k∑
i=1

αiMq→2bi , (A.57)

where Mq→a and the Mq→bi are doubly stochastic matrices
that map q to a and q to each of the (11 + Πi)bi/2∥bi∥, re-
spectively. Applying Mq to the vector q in Eq. (A.56), we
have

p̃ = α0
∥q∥∥a∥ a + k∑

i=1

(αi ∥q∥
2∥bi∥ + (⌊ 2i

d
⌋ + 1)−1 ∥ri∥∥bi∥)(11 +Π)bi.

(A.58)

In order to obtain a thermal state at inverse temperature β′ ≤ β,
one must choose the coefficients αi as

α0 = ∥a∥∥q∥ , αi = 2(⌊ 2i
d
⌋ + 1)−1 (∥bi∥−∥ri∥)∥q∥ . (A.59)

Using the fact that convex combinations of doubly stochastic
matrices are doubly stochastic matrices, to ensure that Mq is
indeed a doubly stochastic matrix, one needs to show that the
coefficients αi as given by Eq. (A.59) are positive and sum to
one. The inequality ∥bi∥≥∥ri∥ in condition (ii) ensures their
positivity. Furthermore by using that ∥p∥ = ∥p̃∥ we have that

∥p∥ = ∥q∥+2
k∑
i=1

(⌊ 2i
d
⌋+1)−1∥ri∥ = ∥a∥+2

k∑
i=1

(⌊ 2i
d
⌋+1)−1∥bi∥,

(A.60)
which shows that α0 +∑ki=1 αi = 1, concluding the proof.

A.IX. Proofs of Lemma 3 and Lemma 4

Here we present detailed proofs of Lemma 3 and Lemma 4.

Proof of Lemma 3. To prove q∥q∥ ≻ (1+Π)b
2∥b∥ , we can employ the

following two majorisation relations:

q∥q∥ ≻ (1 +Π)r
2∥r∥ , (A.61)

(1 +Π)r
2∥r∥ ≻ (1 +Π)b

2∥b∥ . (A.62)

If we show that these relations are true for any β′ ≤ β, we can
say that our statement is proven.

To prove the relation in (A.61), we need to show that the
greatest/smallest entry of q/∥q∥ is greater/smaller than the
greatest/smallest entry of 1+Π

2
r∥r∥ . That is, we first need to

check that
p00

p00 + p11 + p22
≥ p01 + p20

2(p01 + p12 + p20) . (A.63)

Disregarding the trivial case where p0 = 1, and p1 = p2 = 0,
this inequality can be transformed to

e−βE1 + 2e−βE1e−βE2 + e−βE2

≥ (e−βE1 + e−βE2)(e−2βE1 + e−2βE2) (A.64)
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This inequality indeed holds, since the left-hand side is larger
than (or equal to) (e−βE1 + e−βE2)2, which, in turn, is larger
or equal to the righ-hand side of (A.64).

Then, second, we need to check the inequality
p22

p00 + p11 + p22
≤ p20 + p12

2(p01 + p12 + p20) , (A.65)

where the relevant case (i.e., for p1 ≠ 1 such that at least p1 ≠
0) can be rewritten as

e−2βE2(e−β(E1+E2) + 2e−βE1 + e−βE2)
≤ (e−βE2 + e−β(E1+E2))(1 + e−2βE1). (A.66)

This second inequality holds since the right-hand side
of (A.66) is larger than (or equal to) (e−βE2 + e−β(E1+E2))2,
which, in turn, is larger or equal to the righ-hand side
of (A.66).

To prove Eq. (A.62), we show that the greatest entry of(1+Π)r
2∥r∥ is monotonically increasing with β, and that its small-

est entry is monotonically decreasing with β. For the former
we calculate

∂β
p01 + p20

2(p01 + p12 + p20) = ∂β e−βE1 + e−βE2

2(e−βE1 + e−β(E1+E2) + e−βE2)
= E2e

−β(2E1+E2) +E1e
−β(E1+2E2)

2(e−βE1 + e−β(E1+E2) + e−βE2)2
≥ 0. (A.67)

And for the latter

∂β
p20 + p21

2(p01 + p12 + p20) = ∂β e−βE2 + e−β(E1+E2)
2(e−βE1 + e−β(E1+E2) + e−βE2)

= (E1 −E2)e−β(E1+E2) −E2e
−β(2E1+E2)

2(e−βE1 + e−β(E1+E2) + e−βE2)2
≤ 0. (A.68)

Proof of Eq. (54) in Lemma 4. We prove this lemma under the
stated condition on the gap structure of the local Hamiltoni-
ans, i.e., δi≥δi+1. Here we need to show that

q∥q∥ ≻ 1 +Π

2

b1∥b1∥ , (A.69)

q∥q∥ ≻ 1 +Π2

2

b2∥b2∥ = b2∥b2∥ . (A.70)

To do so, we argue that the majorisation relations q∥q∥ ≻
1+Πi

2
ri∥ri∥ and 1+Πi

2
ri∥ri∥ ≻ 1+Πi

2
bi∥bi∥ , for i = 1,2, hold.

Let us start with Eq. (A.69). The condition δi ≥ δi+1 sets
the ordering of 1+Π

2
r1∥r1∥ . Still, some ambiguity remains as

p01 + p30 ≥ p12 + p01 ≥ p30 + p23 ≥ p23 + p12. (A.71)

Thus, we need to prove the following three inequalities:
p00

p00 + p11 + p22 + p33
≥ p01 + p30

2(p01 + p12 + p23 + p30) , (A.72a)

p00 + p11

p00 + p11 + p22 + p33
≥ p01 + p30 + p12 + p01

2(p01 + p12 + p23 + p30) , (A.72b)

p33

p00 + p11 + p22 + p33
≤ p32 + p12

2(p01 + p12 + p23 + p30) . (A.72c)

Inequality (A.72a) can be rewritten as

1

1 + e−2βE1 + e−2βE2 + e−2βE3
≥ 1

2 (1 + p12+p23

p01+p30
) , (A.73)

which can further be turned into the inequality

1 + 1 + e−βE2 + e−βE2 ≥ 1 + e−2βE1 + e−2βE2 + e−2βE3 ,
(A.74)

which holds because E1 ≥ 0 and E3 ≥ E2.
Similarly, inequality (A.72b) can be recast as

1

1 + p22+p33

p00+p11

≥ 1

2

⎛⎝ 1

1 + p2

p0

+ 1

1 + p3

p1

⎞⎠ (A.75)

which implies the inequality

f (p2
2 + p2

3

p2
0 + p2

1

) ≥ 1

2
[f (p2

p0
) + f (p3

p1
)] , (A.76)

where we have introduced f(x) ∶= 1/(1+x). We can see that
f ′(x) ≤ 0 and p2

2+p2
3

p2
0+p2

1
≤ p2

p0
, and in the case of E3 ≤ E1 + E2

also p2

p0
≤ p3

p1
. Thus,

f (p3

p1
) ≤ f (p2

p0
) ≤ f (p2

2 + p2
3

p2
0 + p2

1

) , (A.77)

from which

1

2
[f (p3

p1
) + f (p2

p0
)] ≤ f (p2

2 + p2
3

p2
0 + p2

1

) (A.78)

follows. This proves inequality (A.72b).
Inequality (A.72c) is equivalent to

1

e2βE3 + e2β(E3−E1) + e2β(E3−E2) + 1
≤ 1

2 (1 + p01+p30

p32+p12
) ,

(A.79)

which can be rewritten as

1 + 2
p0

p2
≤ e2βE3 + e2β(E3−E1) + e2β(E3−E2), (A.80)

which is true since the right-hand side is larger or equal
e2βE2 + 2, which, in turn, is larger than (or equal to) the left-
hand side, because (1 − eβE2)2 ≥ 0. This proves Inequal-
ity (A.72c).

Thus far, we have shown that q∥q∥ ≻ 1+Π
2

r1∥r1∥ . To complete
the first part of the proof, we also need to show that

1 +Π

2

r1∥r1∥ ≻ 1 +Π

2

b1∥b1∥ . (A.81)

To do so, we first prove that the derivatives with respect to β
of the two largest elements of 1+Π

2
r1∥r1∥ are positive and those
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of the two smallest elements are negative. Let us represent the
elements of 1+Π

2
r1∥r1∥ as

1 +Π

2

r1∥r1∥ = (f0(β), f1(β), f2(β), f3(β))T . (A.82)

Note that

f0(β) = p01 + p30

2(p01 + p12 + p23 + p30) = 1

2

p0(p1 + p3)(p0 + p2)(p1 + p3)
= 1

2

1

1 + e−βE2
,

(A.83)
which yields

f ′0(β) = 1

2

E2 e
−βE2

(1 + e−βE2)2
≥ 0. (A.84)

Similarly, we obtain

f1(β) = 1

2

1

1 + e−β(E3−E1) , f ′1(β) = (E3 −E1)e−β(E3−E1)
2(1 + e−β(E3−E1))2

≥ 0,

f2(β) = 1

2

1

1 + eβE2
, f ′2(β) = −E2 e

βE2

2(1 + eβE2)2
≤ 0,

f3(β) = 1

2

1

1 + eβ(E3−E1) , f ′3(β) = −(E3 −E1)eβ(E3−E1)
2(1 + eβ(E3−E1))2

≤ 0.

(A.85)
In the regime E3 ≤ E1 +E2, the components are ordered as

f0(β) ≥ f4(β) ≥ f3(β) ≥ f2(β), (A.86)

and thus one needs to show for β′ ≤ β that

f0(β) ≥ f0(β′),
f0(β) + f1(β) ≥ f0(β′) + f1(β′),

f2(β) ≤ f2(β′),
f2(β) + f3(β) ≤ f2(β′) + f3(β′).

(A.87)

These relations follow straightforwardly from Eqs. (A.84)
and (A.85), noting that a function fi(x) that fulfils f ′i(x) ≤ 0
(f ′i(x) ≥ 0) the relation fi(x1) ≤ fi(x2) (fi(x1) ≥ fi(x2)) is
also satisfied for x1 ≥ x2.

In a similar fashion, in the regimeE3 ≥ E1+E2 the ordering
of the components is

f1(β) ≥ f0(β) ≥ f2(β) ≥ f3(β), (A.88)

and thus one needs to show for β′ ≤ β that

f1(β) ≥ f1(β′),
f0(β) + f1(β) ≥ f0(β′) + f1(β′),

f3(β) ≤ f3(β′),
f2(β) + f3(β) ≤ f2(β′) + f3(β′).

(A.89)

These relations also follow straightforwardly from
Eqs. (A.84) and (A.85).

We next turn our attention to Eq. (A.70). Because p02 ≥
p13, we need to prove the following inequalities:

p00

p00 + p11 + p22 + p33
≥ p02

2(p02 + p13) , (A.90a)

p00 + p11

p00 + p11 + p22 + p33
≥ 2p02

2(p02 + p13) , (A.90b)

p33

p00 + p11 + p22 + p33
≤ p13

2(p02 + p13) . (A.90c)

Inequality (A.90a) can be simplified to

p0

p00 + p11 + p22 + p33
≥ p2

2(p02 + p13) , (A.91)

where we can use the inequalities p0p02 ≥ p2p11 and p0p13 ≥
p2p33 to arrive at the condition p0p13 ≥ p2p22. Due to our
assumption on the energy eigenvalues, we have p03 ≥ p22,
which proves inequality (A.90a).

Inequality (A.90b) can be rewritten as

p00 + p11

p00 + p11 + p22 + p33
≥ 2p02

2(p02 + p13) , (A.92)

which implies p13(p00 + p11) ≥ p02(p22 + p33). Moreover,
because p00 + p11 ≥ 2p01, we have

p13(p00 + p11) ≥ 2p01p13 ≥ p01p13 + p02p33≥ p02p22 + p02p33, (A.93)

where in the last step the condition δi ≥ δi+1 was used. This
proves inequality (A.90b).

Inequality (A.90c) can be recast as

p3

p00 + p11 + p22 + p33
≤ p1

2(p02 + p13) , (A.94)

from which we arrive at

2p3p02 + p3p13 ≤ p1(p01 + p10 + p22)≤ p1(p00 + p11 + p22), (A.95)

which is true for any energy spectrum.

Unfortunately, Eq. (54) in Lemma 4 fails when δi ≱ δi+1.

Counterexample to Eq. (54) for δi < δi+1. The relation q∥q∥ ≻
1+Π

2
r1∥r1∥ fails in the regime δi < δi+1. In that regime, the great-

est element of 1+Π
2

r1∥r1∥ is p12+p01

2(p01+p12+p23+p30) and so

p00

p00 + p11 + p22 + p33
≥ p12 + p01

2(p01 + p12 + p23 + p30) (A.96)

must hold in order for the relation to be true. But in the limit
E3 →∞,E1 → 0,E2 → 0 the above inequality becomes

p00

3p00
≥ 2p00

2(p00 + p00) ⇔ 1

3
≥ 1

2
, (A.97)

which is obviously invalid. The relation q∥q∥ ≻ r1∥r1∥
also fails sometimes. Looking at the limit E3 → ∞,
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q∥q∥ → (p00, p11, p22,0) and r1∥r1∥ → (p02,0, p20,0). For the
majorisation relation to hold, we would need p22 ≤ 0, which
is clearly not true in general.

Proof of Eq. (55) in Lemma 4. We need to prove that ∥ri∥ ≤∥bi∥, for i = 1,2, for d = 4. To do so, we again use the first
derivative of ∥ri∥ and show that it is always negative. From

∥ri∥ = ∑
j

pjpj+i = ∑j e−β(Ej+Ej+i)∑m,n e−β(Em+En) , (A.98)

the partial derivative with respect to β reads

∂β∥ri∥ = ∑
j,m,n

(Em +En −Ej −Ej+i) e−β(Em+En+Ej+Ej+i)z(β)4
= 1
z(β)3 ∑

j,m

(2Em −Ej −Ej+i)e−β(Em+Ej+Ej+i). (A.99)

Now we need to show that for any i ≠ 0, ∂β∥ri∥ is negative.
For i = 1 we find

∂β∥r1∥ = −1

z(β)3
[E1(e−βE1 + e−β(E1+E2) − e−2βE1) + (E2 −E1)(−e−β(E1+E2) + e−β(2E1+E2)

+ e−β(E1+E2+E3) − e−β(E1+2E2)) + (E3 −E2)(e−β(E2+E3) − e−β(E1+E2+E3) + e−β(2E2+E3) − e−β(E2+2E3))
+E3(e−β(E2+E3) + e−βE3 − e−β(E1+E3) − e−2βE3)] ≤ 0. (A.100)

Since we have ordered the energy eigenvalues in the increasing order, it is straightforward to show that ∂β∥r1∥ is always non-
positive for any set of energy eigenvalues in dimension 4.

Now similarly, we can show that ∥r2∥ ≤ ∥b2∥. By employing Eq. (A.99), ∂β∥r2∥ is obtained as

∂β∥r2∥ = −2

z(β)3
[E1(e−βE2 + 2e−β(E1+E3) − e−β(E1+E2) − e−2βE2 − e−β(E2+E3)) + (E2 −E1)(e−βE2 + e−β(E1+E3)

+ e−β(E1+E2) + e−β(2E1+E3) − e−2βE2 − e−β(E1+E2+E3) − e−β(E2+E3) − e−β(E1+2E3))
+ (E3 −E2)(e−β(E1+E3) + e−β(2E1+E3) + e−β(E1+E2+E3) − 2e−β(E2+E3) − e−β(E1+2E3))]. (A.101)

The above expression is also nonpositive under the assumption δi ≥ δi+1.

A.X. Proof of monotonicity and convexity of the thermal curve

In this section, we will show that the condition (II) men-
tioned in Sec. III.3 is true for every choice of the set {Ei}d−1

i=0

and any initial inverse temperature.
Expressing a general point in the curve p(β′) =(x0(β′), . . . , xd−2(β′),−1) as a linear combination of the ver-

tices vi in condition (I) we have

⎛⎜⎜⎜⎜⎜⎝

x0(β′)
x1(β′)⋮
xd−2(β′)−1

⎞⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎝

x0(β) 0 0 . . . 0
x1(β) x1(β) 0 . . . 0⋮ ⋱ x2(β) ⋱ 0
xd−2(β) . . . ⋱ ⋱ 0−1 −1 −1 . . . −1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

a0

a1⋮
ad−2

ad−1

⎞⎟⎟⎟⎟⎟⎠
,

(A.102)
where the (a0, . . . , ad−1) are coefficients given by

ai = xi(β′)
xi(β) − xi−1(β′)

xi−1(β) = xi(β′)
xi−1(β) (xi−1(β)

xi(β) − xi−1(β′)
xi(β′) ) ,

(A.103)
which are positive for all i and satisfy ∑i ai = 1 (and thus
below 1 for all i) if the following condition holds

d

dβ
( xm
xm+1

(β)) = 1

xm+1
(∂xm
∂β

− xm
xm+1

∂xm+1

∂β
) ≥ 0 ∀m,

(A.104)

which means that the function xi/xi+1(β) is monotonically
decreasing with β. This in turn means that the final point can
be reached as a convex combination of the vertices.

With a convenient relabeling of the index we can write
xm+1/xm(β) in the form

xm
xm−1 = (m+1)e−βEm+1−∑mi=0 e−βEi

me−βEm−∑m−1i=0 e−βEi
= (m+1)e−βEm+1−me−βEm+me−βEm−∑m−1i=0 e−βEi−e−βEm

me−βEm−∑m−1i=0 e−βEi
= 1 + (m+1)(e−βEm+1−e−βEm)

me−βEm−∑m−1i=0 e−βEi . (A.105)

To prove our claim [condition (II)], we need to show that for
any β ≥ 0 the function xm/xm−1 is monotonically decreasing
with β. That is, we have to show that

R(β) = d

dβ
( xm
xm−1

(β)) ≤ 0. (A.106)

The derivative takes the form



22

R(β) = m+1
x2
m−1 [−(Em+1e

−βEm+1 −Eme−βEm)(me−βEm −m−1∑
i=0

e−βEi) + (e−βEm+1 − e−βEm)(mEme
−βEm −m−1∑

i=0

Eie
−βEi)]

= m+1
x2
m−1 (

m−1∑
i=0

[(Em+1 −Ei)e−β(Em+1+Ei) − (Em −Ei)e−β(Em+Ei)] −m(Em+1 −Em)e−β(Em+1+Em))
= m+1
x2
m−1 (

m−1∑
i=0

[(Em+1 −Ei)e−β(Em+1+Ei) − (Em −Ei)e−β(Em+Ei)] −m(Em+1 −Ei +Ei −Em)e−β(Em+1+Em))
= m+1
x2
m−1

m−1∑
i=0

[(Em+1 −Ei)(e−β(Em+1+Ei) − e−β(Em+1+Em)) − (Em −Ei)(e−β(Em+Ei) − e−β(Em+1+Em))]
= m+1
x2
m−1 e

−β(Em+1+Em)m−1∑
i=0

[(Em+1 −Ei)(eβ(Em−Ei) − 1) − (Em −Ei)(eβ(Em+1−Ei) − 1)]. (A.107)

To prove the nonpositivity of R(β) we need to show that

(Em+1 −Ei)(eβ(Em−Ei) − 1) − (Em −Ei)(eβ(Em+1−Ei) − 1) ≤ 0 for Ei ≤ Em ≤ Em+1. (A.108)

To do so, we define ym ∶= β(Em −Ei), and write inequality (A.108) in the form

h(ym+1) = ym+1

eym+1 − 1
≤ ym
eym − 1

. (A.109)

This inequality is satisfied for all ym+1 ≥ ym if the function h(y) is monotonically decreasing. To see that this is the case, we
calculate the derivative

∂h(y)
∂y

= (1 − y)ey − 1(ey − 1)2
, (A.110)

which can be seen to be smaller or equal to zero since (1 − y)ey is a monotonically decreasing function for y ≥ 0, i.e., ∂
∂y

(1 −
y)ey = −yey ≤ 0 and hence has its maximum value of 1 at y = 0, confirming that (1−y)ey −1 ≤ 0 and that h(y) is monotonically
decreasing.

A.X.a. Explicit partial derivatives in dimension 3

To show explicitly that the curve x(β) is monotonically in-
creasing in d = 3, we first calculate

∂x
∂β

= −Z−2fx(β), (A.111a)
∂y
∂β

= −3Z−2fy(β), (A.111b)

where the functions fx(β) and fy(β) are given by

fx(β) = E1e
−βE1(2 + e−βE2) +E2e

−βE2(1 − e−βE1) ≥ 0,
(A.112a)

fy(β) = (E2 −E1)e−β(E1+E2) +E2e
−βE2 ≥ 0. (A.112b)

With this, we can then evaluate

∂y
∂x

= ( ∂x
∂β

)−1
∂y
∂β

= 3fy(β)
fx(β) ≥ 0, (A.113)

which allows us to confirm that the curve segment lies above
(with respect to the coordinates x and y in the plane of the
polytope) the line connecting (x(β), y(β)) and (x̃, ỹ).

To show that this curve is a convex function, we need to

show that ∂2y/∂x2 ≥ 0, and calculate

∂2y
∂x2 = ( ∂x

∂β
)−1

∂
∂β

[( ∂x
∂β

)−1
∂y
∂β

]
= ( ∂x

∂β
)−2 { ∂2y

∂β2 − ( ∂y
∂β

) ( ∂x
∂β

)−1 ( ∂2x
∂β2 )} . (A.114)

The second partial derivatives with respect to β are found to
be

∂x2

∂β2 = Z−3[2∂Z
∂β
fx −Z ∂fx

∂β
], (A.115a)

∂y2

∂β2 = 3Z−3[2∂Z
∂β
fy −Z ∂fy

∂β
]. (A.115b)

Combining this with Eq. (A.114) we find

∂2y
∂x2 = 3Z2f−3

x (fy ∂fx
∂β

− fx ∂fy∂β ). (A.116)

The derivatives of fx(β) and fy(β) are

∂fx
∂β

= (E2
2 −E2

1)e−β(E1+E2) − 2E2
1e

−βE1 −E2
2e

−βE2 ,

(A.117a)
∂fy
∂β

= −(E2
2 −E2

1)e−β(E1+E2) − E2
2e

−βE2 , (A.117b)
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which we insert into Eq. (A.116) to arrive at

∂2y
∂x2 = 6Z3f−3

x E1E2(E2 −E1)e−β(E1+E2) ≥ 0, (A.118)

where we have made use of the fact that fx ≥ 0 (since 1 ≥
e−βE1 ), along with E1,E2,Z ≥ 0 and E2 ≥ E1.

A.X.b. Explicit partial derivatives in dimension 4

In this appendix, we present the explicit expressions for the
first and second partial derivatives. The derivatives of the co-
ordinates x(β), y(β) and z(β) along the curve of thermal
states can be written as

∂x

∂β
= −Z−2fx(β), (A.119a)

∂y

∂β
= −Z−2fy(β), (A.119b)

∂z

∂β
= −Z−2fz(β), (A.119c)

where the functions fx(β), fy(β), and fz(β) are given by

fx(β) = E1e
−βE1(2 + e−βE2 + e−βE3)

+ (E2e
−βE2 +E3e

−βE3)(1 − e−βE1) ≥ 0, (A.120a)

fy(β) = 3(E2 −E1)e−β(E1+E2) + 3E2e
−βE2

+E3e
−βE3(1 + e−βE1 − 2e−βE2)

+ e−βE3(2E2e
−βE2 −E1e

−βE1) ≥ 0, (A.120b)

fz(β) = 4e−βE3[E3 + e−βE1(E3 −E1)
+ e−βE2(E3 −E2)] ≥ 0, (A.120c)

where fy ≥ 0 follows, since E3 ≥ E2 and (1 + e−βE1 −
2e−βE2) ≥ 0 which implies that the terms in fy proportional to
e−βE3 can be bounded by E3e

−βE3(E2 + e−βE1(E2 −E1)) ≥
0. Since fx, fy , and fz are nonnegative, all partial derivatives

with respect to β are nonpositive, but

∂y

∂x
= (∂x

∂β
)−1 ∂y

∂β
= fy(β)
fx(β) ≥ 0, (A.121)

∂z

∂x
= (∂x

∂β
)−1 ∂z

∂β
= fz(β)
fx(β) ≥ 0, (A.122)

∂z

∂y
= ( ∂y

∂β
)−1 ∂z

∂β
= fz(β)
fy(β) ≥ 0. (A.123)

For the second partial derivatives, we have

∂2y

∂x2
= (∂x

∂β
)−1 ∂

∂β
[(∂x
∂β

)−1 ∂y

∂β
]

= (∂x
∂β

)−2 { ∂2y

∂β2
− ( ∂y

∂β
)(∂x

∂β
)−1 (∂2x

∂β2
)}

= Z2f −3
x (fy ∂fx

∂β
− fx ∂fy

∂β
), (A.124)

∂2z

∂x2
= Z2f −3

x (fz ∂fx
∂β

− fx ∂fz
∂β

), (A.125)

∂2z

∂y2
= Z2f −3

y (fz ∂fy
∂β

− fy ∂fz
∂β

). (A.126)

We thus have to calculate the derivatives of the functions fx,
fy , and fz with respect to β, which evaluate to

∂fx
∂β

= −E2
1e

−βE1(2 + e−βE2 + e−βE3)
− (E2

2e
−βE2 +E2

3e
−βE3)(1 − e−βE1) , (A.127)

∂fy

∂β
= E2

1e
−βE1(3e−βE2 + e−βE3)

−E2
2e

−βE2(3 + 3e−βE1 + 2e−βE3)
−E2

3e
−βE3(1 + e−βE1 − 2e−βE2) , (A.128)

∂fz
∂β

= 4e−βE3[E2
1e

−βE1 +E2
2e

−βE2

− E2
3(1 + e−βE1 + e−βE2)] . (A.129)

Then, sinceZ2 ≥ 0 and fx, fy, fz ≥ 0, we just have to evaluate

fy
∂fx
∂β

− fx ∂fy
∂β

= 2[E1E2e
−β(E1+E2)(E2 −E1) +E1E3e

−β(E1+E3)(E3 −E1)](3 + e−βE3)Z
+ 2E2E3e

−β(E2+E3)(E3 −E2)(1 + e−βE1)(2 + 2e−βE1 − e−βE2 + e−βE3) ≥ 0, (A.130a)

fz
∂fx
∂β

− fx ∂fz
∂β

= 4Ze−βE3 [E1e
−βE1(E2 −E1)(e−βE2(E3 −E − 2) + 2E3)

+ (E3 −E2)E3(E1e
−β(E1+E2) + 2E1e

−βE1 +E2e
−βE2(1 − e−βE1))] ≥ 0, (A.130b)

fz
∂fy

∂β
− fy ∂fz

∂β
= 12Ze−β(E2+E3)(E3 −E2) [E2

1e
−βE1 +E3(E2 −E1)e−βE1 +E2(E3 − e−βE1E1)] ≥ 0. (A.130c)
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A.XI. Geometry of equal thermal marginals for two qutrits

For local dimension d = 3, the transformations we consider
here to ensure symmetric marginals imply that the vectors col-
lecting the diagonal entries of the final state marginals are of
the form

p̃ = p̃A = p̃B =Mqq + (1 +Π)Mrr , (A.131)

where q = (qi) with qi = p2
i and (1 + Π)r = (pi(1 − pi)).

This means that the set of reachable states corresponds to the
convex hull of the points p̃(i, j) ∶= Π(i)q + (1 + Π)Π(j)r for
i, j ∈ {1, . . . ,3!}. However, in our case the problem can be
further reduced to that of showing that the points p(β′ < β) lie
within a restricted part of the polytope, i.e., a triangle between
the points p(β), p(β → 0), and p̃(6,1) = Π(6)q+(1+Π)Π(1)r,
where

Π(1) = 1, Π(6) = ⎛⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎠ , Π = ⎛⎜⎝
0 0 1
1 0 0
0 1 0

⎞⎟⎠ .. (A.132)

Note that the point p(β → 0) trivially lies in the poly-
tope, since it can be obtained from an equally weighted
convex combination of all cyclic permutations obtained for
Π(i) = Π(j) = 1,Π,Π2. Then we switch from the coordinates{p0, p1, p2} to the coordinates {x, y, z}, given by

x = −p0 + p1, (A.133a)
y = −p0 − p1 + 2p2, (A.133b)
z = −p0 − p1 − p2 = −1. (A.133c)

The plane containing the polytope is defined by z = −1 such
that p2 = 1− p0 − p1, and we therefore have y = 2− 3p0 − 3p1.
The corners (p0, p1, p2) = (1,0,0), (0,1,0), and (0,0,1) of
the outer triangle containing all (diagonal) qutrit states are
mapped to (x, y) = (−1,−1), (1,−1), and (0,2), respectively,
see Fig. 1. Moreover, the curve of thermal states is param-
eterised as (x(β), y(β)) with x(β) = −p0(β) + p1(β) and
y(β) = 2− 3p0(β) − 3p1(β), and connects the points (x, y) =(−1,−1) corresponding to p(β →∞) and (x, y) = (0,0) cor-
responding to p(β → 0).

Next, we note that for any given thermal state with coor-
dinates (x(β), y(β)), the coordinates (x = x̃, y = ỹ) of the
corresponding point p̃(6,1) are given by

x̃ = (p0 − p1)[2(p0 + p1) − 1] ≥ 0, (A.134a)

ỹ = 2 − 3p0 − 3p1 = y(β), (A.134b)

and consequently this point always lies on the same height ỹ =
y(β) as the point corresponding to p(β), but to the right, i.e.,
x̃ ≥ 0 ≥ x(β) of any of the points corresponding to thermal
states (in particular p(β → 0)). This shows that the point with
coordinates (x0, x1) = (0, y(β)) is included in the polytope,
since it can be obtained as a convex combination of p(β) and
p̃(6,1).

Moreover, evaluating the partial derivatives, we have
found (∂y(β)/∂x(β) ≥ 0) and (∂2y/∂x2 ≥ 0), see Ap-
pendix A.X.b, i.e., the curve described by (x(β), y(β)) is

a monotonically increasing (∂y(β)/∂x(β) ≥ 0) and convex(∂2y/∂x2 ≥ 0) function, implying that the curve segment cor-
responding to all points (x(β′), y(β′)) with β′ ≤ β is con-
tained within the triangle p(β), p̃(6,1), and p(β → 0).

A.XII. Geometry of equal thermal marginals for two ququarts

For local dimension d = 4, we have marginal vectors of the
form

p̃ = p̃A = p̃B =Mqq + (1 +Π)Mr1r1 + 1
2
(1 +Π2)Mr2r2.

(A.135)

The set of reachable states corresponds to the convex hull of
the points p̃(i, j,k) ∶= Π(i)q+(1+Π)Π(j)r1+ 1

2
(1+Π2)Π(k)r2

for i, j, k ∈ {1, . . . ,4!}. Switching from the coordinates{p0, p1, p2, p3} to the new coordinates {x, y, z,w}, given by

x = −p0 + p1, (A.136a)
y = −p0 − p1 + 2p2, (A.136b)
z = −p0 − p1 − p2 + 3p3, (A.136c)
w = −p0 − p1 − p2 − p3 = −1 . (A.136d)

We here show that the points (x, y, z) = (0, y(β), z(β))
and (0,0, z(β)) are included. To achieve this, we identify a
set of 5 points that all lie in the plane of constant z = z(β),
and show that the two-dimensional polytope spanned by these
points encloses both (0, y(β), z(β)) and (0,0, z(β)), see
Fig. 2. These five points are A = p̃(1,1,1), B = p̃(7,1,1),
C = p̃(13,7,1), D = p̃(9,7,1), and E = p̃(9,1,1), where

Π = ⎛⎜⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎠ , Π(7) = ⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ ,

Π(9) = ⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎟⎠ , Π(13) = ⎛⎜⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ . (A.137)

The point B can be seen to have the same y-coordinate as the
starting point A, y(B) = y(A) = y(β), while

x(B) = (p0(β) − p1(β))(2p0(β) + 2p1(β) − 1) ≥ 0,

(A.138)

since p0(β) ≥ p1(β) and p0(β) + p1(β) ≥ 1
2

for any
Hamiltonian and any temperature. This means the point(0, y(β), z(β)) is contained in polytope since it can be ob-
tained as a convex combination of A and B.

Finally, to show that the point Õ = (0,0, z(β)) is contained
within the polytope, we show that the points C, D and E sat-
isfy, x(C) ≥ 0, y(D) ≥ 0 and x(E) ≤ 0, while (AÕ×AE)z ≥
0, (EÕ×ED)z ≥ 0 and (DÕ×DC)z ≥ 0, where for any two
points X and Y we use the notation XY = Y −X . In other
words, the closed path connecting the five points A, B, C, D
and E encircles the point Õ, meaning that Õ can be written as
a convex combination of these points.
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FIG. 2. Illustration of geometric method for d = 4. (a) In local dimension d = 4, the space of marginal probability distributions can be
mapped to the hyperplane of constant coordinate w = −1, leaving a three-dimensional space with coordinates x, y, and z. For any fixed
Hamiltonian, the thermal states form a one-parameter family of states along a line connecting (x, y, z) = (−1,−1,−1)T with (0,0,0)T , where
the curve is strictly confined to the region x, y, z ≤ 0 (dashed blue). The dashed red lines delineate the minimal polytope spanned by the points
A, B, C, D, E (which all share the same z-coordinate z = z(β)) and the origin O. (b), (c), (d) show the projections onto the x-y, x-z and y-z
plane, respectively.

In a slight abuse of notation, we now use the shorthand pi ≡
pi(β) for the thermal state diagonal components to express
the relevant coordinates for the points C, D and E as

x(C) = (p0 − p1)(2p0 + 2p1 + p2 − 1)
+ (p1 − p2)(p0 + p1 + p2) ≥ 0, (A.139a)

y(D) = 3(p0 − p1)(p0 + p1 + p2 − 1
3
)

+ 3(p1 − p2)(p0 + p1 + p2 − 2
3
) ≥ 0, (A.139b)

x(E) = −[(p0 − p1)(1 − p0 − p1)+ (p1 − p2)(p1 + p2)] ≤ 0, (A.139c)

while the z-components of the relevant cross products are
given explicitly below. In Appendix A.X.b we have fur-
ther shown that the partial derivatives ∂y/∂x, ∂z/∂x, and
∂z/∂y as well as second derivatives ∂2y/∂x2, ∂2z/∂x2, and
∂2z/∂y2 are nonnegative along the curve of thermal states,
meaning that conditions (I) and (II) are satisfied for d = 4.

A.XII.a. Relevant cross products

Finally, the z-components of the relevant cross products are
given
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(AÕ ×AE)z = (p0 − p1)2(2p0 − 2p1 + 3p2) + (p0 − p1)(p1 − p2)(p0 − p1 + 4p2) + 2(p1 − p2)2(p1 + p2) ≥ 0, (A.140a)

(EÕ ×ED)z = 2p1(p0 − p2)[(p0 − p1)(1 − p1 + p2) + (p1 − p2)(p1 + 2p2 − p3)] ≥ 0, (A.140b)

(DÕ ×DC)z = (p0 − p1)2(p0 + p2)((3p0 + 3p1 − 1) + 3(p1 − p3))+ (p0 − p1)(p1 − p2)(3(p0 − p1)(p0 + p1) + 6p0(p2 − p3) + 2p2(2p0 + 5p1 + 2p2 − p3))
+ (p1 − p2)2([p0 − 3p3(1 − p3) + 6p1p2] + (p1 − p2) + 3p2

2 + 2(p0 − p1)(1 + 3p0)) ≥ 0, (A.140c)

where the last inequality follows since the term in angled brackets in the last line can be shown to nonnegative using 6p1p2 ≥ 6p2
3

and 3p3(1 − 3p3) ≤ 1
4
≤ p0.

A.XIII. Outlook on the geometric method in higher
dimensions

Here we present a possible recursive generalisation of the
geometric approach, based on re-expressing condition (I) in
terms of majorisation relations rather than trying to prove it in
a full geometric way.

To illustrate this method we refer back to the proof of The-
orem 3 for the case d = 4. We have seen that the point
v1 = (0, x1(β), x2(β),−1) can be reached with a transfor-
mation of the type v1 =Mq1q+ (11+Π)11r1 + 1

2
(11+Π2)11r2,

where

Mq1 =
⎛⎜⎜⎜⎝

m 1 −m 0 0
1 −m m 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , (A.141)

with m = 1 − 1/2(p0 + p1), which is doubly stochastic since
p0 + p1 ≥ 1/2 holds for d = 4.

To prove that v2 = (0,0, x2(β),−1) can be reached, we
also considered Mr2 = 11, which turns out to be a big simpli-
fication, due to the following reasoning. Assuming Mr2 = 11
we can rewrite the general transformation that (potentially)
reaches v2 as

v2 + q − p − (11 +Π)(Mr1 − 11)r1 =Mqq, (A.142)

where we used the fact that 1
2
(11+Π2)r2 = p−q−(11+Π)r1.

Thus, with this simplification of assuming Mr2 = 11, the prob-
lem reduces to showing that there exist some pair (Mq,Mr1)
such that Eq. (A.142) holds. In particular, we use the fact
that (1 + Π)(Mr1 − 11) has norm equal to zero, which in
turn implies that the sum of vectors on the left hand side of
Eq. (A.142) has the same norm as q, since both v2 and p have
norm 1 (i.e., they are probabilities). Note also that the vector(11+Π)(Mr1−11) by itself need not be ordered with decreasing
components, as well as the whole expression in the left hand
side of Eq. (A.142). More precisely, in this case the greatest
component of expression v2 + q − p is the third.

To prove the statement, then, we can show that v2 +q−p−(11 + Π)(Mr1 − 11)r1 is majorised by q, or, more precisely,
we have to find a proper stochastic matrix Mr1 such that the
above majorisation holds. This is achieved again with a matrix

of the form Mr1 =Mq1 that leads to

(11 +Π)(Mr1 − 11)r1 = (−a,0, a,0), (A.143)

with a = (m − 1)p1(p0 − p2). Then, the first condition for
the majorisation relation to hold is that the third component
of the left hand side of Eq. (A.142) is smaller than the first
component of q, i.e., that

p0 + p1 − 2p2

3
+ p2

2 + (m − 1)p1(p0 − p2) ≤ p2
0, (A.144)

which implies that we have to choose

1 −m = max{0,
p0 + p1 − 2p2 − 3(p2

0 − p2
2)

3p1(p0 − p2) }, (A.145)

such that the majorisation relation is correctly satisfied, since
the other conditions are also trivially satisfied.

The last step to check is that with this choice of the param-
eter 1 −m, Mr1 is indeed a doubly stochastic matrix. This is
true because

1 −m ≤ 1 ⇐⇒ p0 + p1 − 2p2 − 3(p2
0 − p2

2) ≤ 3p1(p0 − p2)
(A.146)

also holds, as well as 1 −m ≥ 0, which holds by construction.
For higher dimensions, we can try a sort of recursive rea-

soning, that we work out here for the case d = 5. Let us hy-
potesise that the three vertices (v1,v2,v3) can be found with
a set of transformations {(Mqi , (Mr1)i, 11)}i=1,2,3, i.e., that
are such that the last stochastic matrix is always the identity(Mr2)i = 11 for all i = 1,2,3. This allows us to decompose
the last vector as

(1 +Π2)r2 = p − q − (1 +Π)r1, (A.147)

that is p−q minus a sum of terms that have zero norm. Then,
we rewrite the condition for a vertex vi to be reached as

vi − p + q − (1 +Π)((Mr1)i − 11)r1 =Mqiq, (A.148)

which is satisfied if and only if the left hand side is ma-
jorised by q. So now, the task would be to find suitable
doubly stochastic matrices (Mr1)i such that the left hand
side is majorised by q for each of the vi. Let us then start
by considering v1, which in the probability coordinates is



27

v1 = ((p0 + p1)/2, (p0 + p1)/2, p2, p3, p4). In this case,
the greatest component of vi − p + q is the second, namely
p0−p1

2
+ p2

1. Unlike lower dimensions, however, in this case
we have that p0−p1

2
+ p2

1 ≤ p2
0 ⇐⇒ p0 + p1 ≥ 1/2 does not

always hold, meaning that this time (Mr1)1 = 11 does not suf-
fice. Thus, in general we have to find (Mr1)1 such that the
second component of the vector r̃1 ∶= (1+Π)((Mr1)1−11)r1

is negative. The simplest would be if r̃1 = (−a, a,0,0,0) for
some positive a. However, it can be readily checked that this
is not possible. Nevertheless, we can look for vectors, for ex-
ample, of the form r̃1 = (a1, a2,−a1 − a2,0,0), for positive
a2 such that we can satisfy p0−p1

2
+ p2

1 − a2 ≤ p2
0 by choosing

a2 = max{0, (p0 − p1)( 1
2
− p0 − p1)}. (A.149)

Afterwards, the next condition for the majorisation to hold is
either

p2
0 + p2

1 − a1 − a2 ≤ p2
0 + p2

1, (A.150)

or

p0−p1

2
+ p2

1 + p2
2 + a1 ≤ p2

0 + p2
1. (A.151)

While the first is trivially satisfied if a1 and a2 are both pos-
itive, the second needs to be checked. After this, all other
conditions for the majorisation will be trivially satisfied. This
can be achieved with the following matrix:

(Mr1)1 =
⎛⎜⎜⎜⎜⎜⎝

1 −m1 m1 0 0 0
0 1 −m1 m1 0 0
m1 0 1 −m1 0 0
0 0 0 1 −m2 m2

0 0 0 m2 1 −m2

⎞⎟⎟⎟⎟⎟⎠
,

(A.152)
with

a2 =m2p4(p0 − p3) =m1(p0p1 − p2p3),
a1 =m1p2(p1 − p3), (A.153)

and we have to ensure the following conditions (only in the
case 1/2 ≥ p0 + p1), coming from m1 ≤ 1 and m2 ≤ 1

(p0 − p1)( 1
2
− p0 − p1)/(p0p1 − p2p3) ≤ 1,

(p0 − p1)( 1
2
− p0 − p1)/(p4(p0 − p3)) ≤ 1,

(A.154)

plus we have to guarantee that Eq. (A.151) is satisfied, which
leads to

(p0−p1)( 1
2
−p0−p1)p2(p1−p3)/(p0p1−p2p3) ≤ p2

0−p2
2−p0−p1

2
,

(A.155)
since a1 = (p0 − p1)( 1

2
− p0 − p1)p2(p1 − p3)/(p0p1 − p2p3).

The above conditions are nontrivial, but still satisfied, as it is
shown below in Sec. A.XIII.a.

Let us now come to v2. For this case we can try to re-use
the result of d = 4, and show that the majorisation relation

v2 − p + q + (1 +Π)((Mr1)2 − 11)r1 =Mq2q, (A.156)

holds for

(Mr1)2 =
⎛⎜⎜⎜⎜⎜⎝

m 1 −m 0 0 0
1 −m m 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, (A.157)

with the appropriate coefficient 1 − m, which is exactly the
same as in the previous case, namely

1 −m = max{0,
p0 + p1 − 2p2 − 3(p2

0 − p2
2)

3p1(p0 − p2) }, (A.158)

and again we have to ensure that

1 −m ≤ 1 ⇐⇒ p0 + p1 − 2p2 − 3(p2
0 − p2

2) ≤ 3p1(p0 − p2).
(A.159)

However, while Eq. (A.159) holds alwasy true for d = 4, this
is no longer the case for d = 5. Still, there is a range of param-
eters {Ei}5

i=1 where it holds (see also Sec. A.XIII.a below).
Last, for the point v2 we can consider a matrix similar to

the above, namely

(Mr1)3 =
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 m 1 −m 0 0
0 1 −m m 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, (A.160)

but now the condition to be satisfied is p0+p1+p2+p3

4
−p3+p2

3−(1 −m)p2(p1 − p3) ≤ p2
0 which leads to

1 −m = max{0,
p0 + p1 + p2 − 3p3 − 4(p2

0 − p2
3)

4p2(p1 − p3) }.
(A.161)

The requirement 1 −m ≤ 1 thus translates to

p0 + p1 + p2 − 3p3 − 4(p2
0 − p2

3) ≤ 4p2(p1 − p3). (A.162)

While this last relation might not hold in general, it can be
satisfied in some appropriately chosen range of the parameters{Ei}4

i=1. Thus, in order to fully prove the d = 5 case with this
method, one would need to find other possible (Mr1)2 and(Mr1)3 for the respective complementary parameter regions.
Nevertheless, this can possibly still be achieved while keeping
Mr2 = 11.

In conclusion, we have seen a possible strategy to prove that
all the vertices listed in condition (I) can be reached with the
transformations preserving equal marginals. This exploits the
geometry of such achievable thermal marginals and tries to
avoid the difficulties encountered in the ”passing on the norm
approach, by considering the assumption that it is always pos-
sible to choose one of the matrices Mri as the identity. This
assumption is in fact supported by the geometric proofs in di-
mensions d = 3 and d = 4.
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A.XIII.a. Validity of doubly stochasticity of Mri for d = 5

Here we study the validity of the relations that guarantee
that the matrices Mri needed for the proof of d = 5 are indeed
doubly stochastic. We start with Eq. (A.146), which was also
needed for the d = 4 case. To prove Eq. (A.146) we can see
that

p0 + p1 − 2p2 − 3(p2
0 − p2

2) ≤ 3p1(p0 − p2). (A.163)

The above relation in fact holds since we can rewrite it as

(p0 − p2)(1 − 3(p0 + p1 + p2)) + (p1 − p2) ≤ 0, (A.164)

and we can see that indeed

(p0 − p2)(1 − 3(p0 + p1 + p2)) + (p1 − p2) ≤(p0 − p2)(2 − 3(p0 + p1 + p2)) ≤ 0,
(A.165)

since p0+p1+p2 ≥ 2/3 holds for d = 4, but not always d = 5. In
fact, for d = 5 we can have points close to p0 = p1 = p2 = 1/5.

To prove Eq. (A.154), we have to prove that, whenever 1
2
≥

p0 + p1 it holds that

(p0 −p1)( 1
2
−p0 −p1) ≤ p4(p0 −p3) ≤ p0p1 −p2p3. (A.166)

This is indeed true, since we can rewrite it as

(p0−p1)( 1
2
−p0−p1)−p4(p0−p3) ≤ (p0−p1)( 1

2
−p0−p1−p4) ≤ 0,

(A.167)

where the last relation holds whenever 1
2
≥ p0+p1 because we

can write

1
2
− p0 − p1 − p4 = p2 + p3 − 1

2
≤ p0 + p1 − 1

2
≤ 0. (A.168)

Let us know consider Eq. (A.155). Since p2(p1 − p3) ≤(p0p1 − p2p3) we can rewrite it as

(p0 − p1)( 1
2
− p0 − p1) ≤ p2

0 − p2
2 − p0−p1

2
, (A.169)

which is always satisfied since p0 − p1 ≤ 2(p2
0 − p2

1) ≤ 2p2
0 −

p2
2 − p2

1.
Finally, let us consider Eq. (A.162). We can rewrite the

expression as

(p0 − p3)(1 − 4(p0 + p3)) + (p1 − p3)(1 − 4p2) + p2 − p3 ≤ 0,
(A.170)

and again, we can see that

(p0 − p3)(3 − 4(p0 + p2 + p3)) ≤(p0 − p3)(1 − 4(p0 + p3)) + (p1 − p3)(1 − 4p2) + p2 − p3

(A.171)
and in particular both the above expressions are surely nega-
tive whenever

p0 + p2 + p3 ≥ 3
4
, (A.172)

which is not always true, but it is so in a certain range of pa-
rameters.
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We show that it is impossible to perform
ideal projective measurements on quantum
systems using finite resources. We identify
three fundamental features of ideal projective
measurements and show that when limited by
finite resources only one of these features can
be salvaged. Our framework is general enough
to accommodate any system and measuring de-
vice (pointer) models, but for illustration we
use an explicit model of an N-particle pointer.
For a pointer that perfectly reproduces the
statistics of the system, we provide tight an-
alytic expressions for the energy cost of per-
forming the measurement. This cost may be
broken down into two parts. First, the cost
of preparing the pointer in a suitable state,
and second, the cost of a global interaction be-
tween the system and pointer in order to cor-
relate them. Our results show that, even un-
der the assumption that the interaction can be
controlled perfectly, achieving perfect correla-
tion is infinitely expensive. We provide pro-
tocols for achieving optimal correlation given
finite resources for the most general system
and pointer Hamiltonians, phrasing our results
as fundamental bounds in terms of the dimen-
sions of these systems.

1 Introduction
The foundations of any physical theory are laid by its
axioms, postulates and laws. In quantum theory, the
projection postulate presents one of these central pil-
lars. It says that upon measuring a quantum system,
its post-measurement state is given by an eigenstate of
the measured observable and the corresponding prob-
ability for obtaining this state is given by the Born
rule. In this way, an ideal projective measurement
leaves the system in a pure state that is perfectly cor-
related with the measurement outcome.

Similarly, the key tenets of thermodynamics are
formed by its three fundamental laws. Intense efforts
in quantum thermodynamics [1–3] have placed these
laws on rigorous mathematical footing [4–13]. Of par-

Yelena Guryanova: yelena.guryanova@oeaw.ac.at
Nicolai Friis: nicolai.friis@univie.ac.at
Marcus Huber: marcus.huber@univie.ac.at

ticular interest is the third law of thermodynamics in
the quantum regime, which tells us that no quantum
system can be cooled to the ground state (which, in
non-degenerate cases, is a pure state) in finite time
and with finite resources [11, 12, 14–17]. This is in
apparent contradiction with the projection postulate
[18] — how is it that an ideal, error-free, measurement
leaves the system in a state forbidden by the laws of
thermodynamics?

In reality, we know that measurements in the lab
are performed in finite time and with finite resources.
These measurements are prone to small errors, im-
plying that the post-measurement state of the system
is never truly pure. However, with technological ad-
vances making errors ever smaller, one would assume
rising thermodynamic costs as the post-measurement
state of the system approaches purity.

Here, we resolve this apparent contradiction. We
show that the resource cost of an ideal quantum mea-
surement in a finite temperature environment is in-
deed infinite. Our operational approach is based on
correlations between a system and a pointer, allow-
ing us to make quantifiable statements about the
cost. Within this framework we identify that an ideal
projective measurement has three model-independent
properties; it is: unbiased, faithful, and non-invasive
— properties that cannot hold simultaneously for
measurements with finite resources (energy and time).
Our framework is general enough to accommodate any
measurement model for which we provide quantitative
results for an example case. In doing so, we refrain
from making statements about what is commonly per-
ceived as the ‘measurement problem’ (how or why the
system is left in a particular state and what it means
to obtain a ‘result’ [19, 20]).

Past approaches to quantifying the cost of a
quantum measurement have typically assumed that
projective measurements can be carried out per-
fectly and that their cost can be attributed to the
work value of the measurement outcome [5, 21–24].
Others adopt the stance that Landauer’s erasure
bound represents the cost of resetting devices to
pure states [4, 25, 26], without providing conclu-
sive evidence that the bound is achievable. These
works assume an unlimited supply of pure states,
circumventing the third law of thermodynamics
and resulting in finite energy costs. However, when
limited to thermal environments, measurements
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produce errors, which can be mitigated by either
reducing the temperature of the environment, or by
using larger measuring devices. Both strategies can
be quantified in terms of their thermodynamic cost,
for which we provide exact analytic results. Our
results demonstrate that even the simplest quantum
measurements on qubits are never for free.

2 Ideal measurements
Consider an unknown quantum system ρS and a mea-
suring device (pointer) ρP . To measure the system,
one must couple it to the pointer and effect a joint
transformation that correlates them: ρS⊗ρP −→ ρ̃SP .
In an ideal measurement, the system and pointer be-
come perfectly correlated, such that upon “observ-
ing” the pointer, one infers which pure state the sys-
tem is in with probability 1. More precisely, each
eigenstate | i 〉

S
of the measured observable of the sys-

tem is assigned a set {| ψ̃(i)
n 〉P}n of orthogonal states

of the pointer corresponding to a projector Πi =∑
n | ψ̃(i)

n 〉〈 ψ̃(i)
n |. The projectors are orthogonal, form-

ing a complete set, ΠiΠj = δijΠi and
∑
i Πi = 1P .

Upon finding the pointer in a state | ψ̃(i)
n 〉P (chosen

to reflect | i 〉
S
), one concludes that the measurement

outcome is “i”, and that the system is left in the state
| i 〉

S
. Up to arbitrary off-diagonal elements w.r.t. the

basis {| i 〉⊗| ψ̃(j)
n 〉}i,j,n, the ideal post-interaction state

with perfect correlation has the form

ρ̃SP =
∑

i

ρii | i 〉〈 i | ⊗ ρ(i) + off-diag. , (1)

where ρii = 〈 i | ρS | i 〉 are diagonal elements w.r.t.
the basis {| i 〉}S and ρ(i) is a pointer state, associ-
ated to one and only one of the outcomes i, i.e.,
Πiρ

(j) = δijρ
(j). The form of ρ̃SP in Eq. (1) is the

result of an ideal measurement and can be entangled
or simply classically correlated. This ideal measure-
ment satisfies three fundamental properties:

(i) Unbiased. The probability of finding the
pointer in a state associated with outcome i af-
ter the interaction is the same as the probability
of finding the system in the state | i 〉

S
before the

interaction,

tr
[
I⊗ Πiρ̃SP

]
= tr

[
| i 〉〈 i |

S
ρS] = ρii ∀i ∀ρS.

(2)

A measurement is unbiased if the pointer repro-
duces the measurement statistics of the system.

(ii) Faithful. There is a one-to-one correspon-
dence between the pointer outcome and the
post-measurement system state

C(ρ̃SP ) :=
∑

i

tr
[
| i 〉〈 i | ⊗Πi ρ̃SP

]
= 1 ∀ρS,

(3)

i.e., ρ̃SP has perfect correlation: on observing
the pointer outcome i (associated to Πi), one
concludes that the system is left in the state | i 〉

S

with certainty.

(iii) Non-invasive. The probability of finding the
system in the state | i 〉

S
is the same before and

after the interaction with the pointer,

tr
[
| i 〉〈 i |

S
ρ̃SP
]

= tr
[
| i 〉〈 i |

S
ρS
]

= ρii ∀ i ∀ρS.
(4)

This property only holds for the basis | i 〉
S

and
coherences appearing on the off-diagonal can, in
general, be destroyed.

These three properties, stated here without particu-
lar hierarchy, capture the pairwise relation between (i)
the pre-measurement system state and the measure-
ment outcome, (3) between the measurement outcome
and the post-measurement system state, and (4) be-
tween the pre- and post-measurement system states,
respectively.

All quantitative statements we make about the
faithfulness of a measurement [property (3)] depend
on the function C(ρ̃SP ) in Eq. (3). This function’s
value represents the average probability of correctly
inferring the post-measurement state upon observing
the pointer, which is 1 for any unbiased measurement
if and only if the post-interaction state is of the form
of ρ̃SP in Eq. (1). One could choose more complicated
functions or even measures of correlation. However,
in our paradigm it is sufficient to be classically
correlated to have perfect ‘correlation’ in the sense
that C = 1. Note that quantum correlations are
not strictly necessary, since C(|0 〉

S
|0 〉

P
) = 1. The

advantage of the expression in Eq. (3) is that it
quantifies the probability that the pointer indicates
an outcome which is correct and yields the maximal
value 1 if and only if the post-interaction state is of
the form of Eq. (1).

Example. Consider a measurement of a qubit system
using a single qubit pointer in the ground state.
We model the measurement with a controlled NOT
operation UCNOT = |0 〉〈0 |

S
⊗ 1P + |1 〉〈1 |

S
⊗ XP ,

where X = |0 〉〈1 | + |1 〉〈0 |. The post-measurement

state ρ̃SP = UCNOT (ρS ⊗ |0 〉〈0 |P ) U†CNOT is of
the form of Eq. (1), meaning the measurement
is unbiased, faithful, and non-invasive. Indeed,
whenever both system and pointer have dimension
dS = dP = d, and the pointer is initially in a pure
state (w.l.o.g. the ground state), we can define a
unitary Ud := |0 〉〈0 |

S
⊗ 1P +

∑
i6=0 | i 〉〈 i |S ⊗ X(i)

P ,

where X(i)
P = |0 〉〈 i |+ | i 〉〈0 |+∑j 6=0,i |j 〉〈j |, realizing

an ideal measurement. A more detailed discussion of
this example is presented in Appendix A.II.
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3 Non-ideal measurements
We call a measurement in which any of the proper-
ties (i) – (iii) fails to hold non-ideal. This is due to
the fact that, in general, the properties do not imply
one another, i.e., satisfying a single property does not
imply any of the other two, as illustrated in Fig. 1.
Things become more subtle when a pair of proper-
ties is satisfied. In two cases, satisfying a pair of
properties implies the third. As we show in detail
in Appendix A.III, a measurement which is faithful
and unbiased is also non-invasive, and a measurement
that is faithful and non-invasive is unbiased. However,
in general, a measurement being unbiased and non-
invasive for a particular input state does not imply it
is faithful, unless it is unbiased and non-invasive for
all input states ρS, as illustrated in Fig. 1.

In what follows we prove that faithful measure-
ments (perfect correlations) are possible if and only
if one can prepare states with sufficiently many van-
ishing eigenvalues. Since, by the third law of thermo-
dynamics, one cannot prepare states of non-full rank
with finite resources, property (ii) fails to hold and
therefore ideal measurements are not physically feasi-
ble. To see this, consider the most general interaction
between a system and pointer — a completely posi-
tive and trace-preserving (CPTP) map, which can be
understood as a unitary on the system and an ex-
tended pointer. In order for such a unitary to realize
a faithful measurement according to Eq. (3), the rank
of the final state ρ̃SP must be bounded from above
by the dimension of the pointer dP (with dP ≥ dS),
since dS ≤

∑
i rank(ρ(i)) ≤ dP . When dS = dP = d,

this implies that the initial rank of the pointer ρP
must be 1, i.e., a pure state. For larger pointers, their
initial state need not be pure, but it cannot have full
rank — one must have rank(ρP ) ≤ dP/dS. Practically,
this requires pure state preparation for some non-
trivial pointer subspaces. Thus, faithful and there-
fore ideal measurements are not possible without a
supply of pure states (states at absolute zero temper-
ature). States with non-full rank require infinite time,
energy or complexity (interaction range) to be pre-
pared and are prohibited by the third law of thermo-
dynamics [11, 12, 14–17]. Conversely, whenever the
pointer state does not start with full rank, operations
such as Ud allow one to achieve perfect correlation.

Since faithful (and hence also ideal) measurements
are not possible, we want to determine how closely
they can be approximated. Since laboratory experi-
ments take place at non-zero temperature, the natu-
ral state of a pointer is in thermodynamic equilibrium
with its environment, i.e., the state τP (β), with inverse
temperature β = 1/kBT . At any finite temperature,
a thermal state has full rank, and any deviation from
it requires an input of work.

While faithfulness is not necessarily the most im-
portant property, it is the one that certainly cannot

faithful

unbiased
non-

invasive

Figure 1: The properties attributed to an ideal measurement.
In a non-ideal measurement these three properties do not
hold simultaneously, and satisfying one of them does not im-
ply any of the other two. When ρS is fixed, in two out of
three cases, satisfying a pair of properties implies that the
third property also holds. A measurement which is faithful
and unbiased implies that it is also non-invasive, and a mea-
surement that is faithful and non-invasive implies that it is
unbiased. When ρS is relaxed to all initial system states,
then satisfying any pair of properties implies the third, and
one recovers the last relation, namely that a measurement
which is unbiased and non-invasive (for all ρS) implies that
it is also faithful.

be upheld in practice, whereas one of the other two
properties can in principle be maintained also for
practical measurements. Here, we take the point
of view that the crucial property to demand of any
measurement is to be unbiased. This guarantees that
with sufficient repetitions, one obtains a mean value
for the measured observable that accurately reflects
the mean value of the underlying system ρS and the
degree of trust in this outcome can be quantified
using standard statistical methods. Conversely, if one
imposed that the measurement were non-invasive,
one would be able to perform repeated measurements
on the system without changing the statistics of the
measured observable. However, without properties (i)
or (ii) it would not be possible to reliably relate
the measurement data to statements about ρS. We
therefore consider non-ideal measurements between
a system ρS and a thermal pointer τP (β) with the
property that the measurements are unbiased. In
Appendix A.IV, we derive the general structure of
maps realizing unbiased measurements in full detail.

4 Maximally faithful measurements
After imposing the measurements to be unbiased, we
are then interested in the ones that produce the best
correlations, in other words those which are as close to
faithful as possible and thus approximate ideal mea-
surements in a meaningful way. For such unbiased
maximally correlating measurements, one may then
determine and minimize the finite energy cost. To
provide a self-contained description of this cost, we
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consider the joint system of S and P to be closed,
implying that we restrict to unitary maps. In Ap-
pendix A.V we further discuss this restriction and
show that such unitarily correlating unbiased mea-
surements are indeed possible at any temperature.
Moreover, we find that unitarily correlating unbiased
measurements have a maximal achievable correlation
Cmax that can only be reached if sufficient energy
is supplied. To see this, let us denote the system
and pointer Hamiltonians by HS and HP and the
corresponding dimensions by dS and dP . For unbi-
ased measurements, the restriction to unitary maps
ρS ⊗ τP → ρ̃SP implies a truncation of dP at an in-
teger multiple of dS. We then order the spectrum
of the pointer Hamiltonian and divide it into dS dis-
joint sets {E(k)

i }i=0,...,dP /dS−1 for k = 0, . . . , dS − 1,

such that HP =
∑dS−1
k=0

∑dP /dS−1
i=0 E(k)

i |E(k)
i 〉〈E(k)

i |
and E(k)

i ≥ E(k′)
j whenever k ≥ k′ or when k = k′

and i ≥ j. Up to swaps between degenerate ener-
gies, the set {E(0)

i }i contains the dP/dS smallest en-

ergies and consequently { 1
Z e
−βE(0)

i
}}i are the largest

populations. These populations are assigned to the
‘correlated subspace’. For unbiased unitaries, there is
an algebraic maximum to the achievable correlations
between any system and thermal pointer, given by

Cmax(β) =
dP /dS−1∑

i=0
e−βE

(0)
i /Z , (5)

which is independent of ρii precisely due to unbiased-
ness. A more detailed derivation can be found in Ap-
pendix A.VII.

Note that, because we assigned the largest popu-
lations to the ‘correlated subspace’, Cmax can be in-
terpreted as the maximum probability of the post-
measurement system being in the same state as the
pointer. For an arbitrary unbiased measurement gen-
erally C(ρ̃SP ) ≤ Cmax(β). For an arbitrary unbiased
measurement achieving Cmax one can select a pointer
basis {| ψ̃(k)

i 〉}i,k such that the resulting state can be
written

ρ̃SP =
dS−1∑

k=0

ρkk
Z
(dP /dS−1∑

i=0
e−βE

(0)
i |k 〉〈k | ⊗ | ψ̃(k)

i 〉〈 ψ̃(k)
i |

+
∑

m 6=k

dP /dS−1∑

i=0
e−βẼi,m U (k)

nc |m 〉〈m | ⊗ | ψ̃(k)
i 〉〈 ψ̃(k)

i |U (k)†
nc

)
,

(6)
where the U (k)

nc for k = 0, . . . , dS are unitaries on
the non-correlated subspaces spanned by the vectors
|m 〉 | ψ̃(k)

i 〉 for i = 0, . . . , dP/dS − 1 and m 6= k,
{Ẽi,m 6=k}i,m = {E(n > 0)

i }n,i. From this form, we
see that perfect correlation C = 1 is only possible
if the pointer temperature reaches absolute zero, or,
more generally, if the rank of the pointer is bounded
by rank(ρP ) ≤ dP/dS. Note that the way the sys-
tem state is altered through measurement is not com-
pletely fixed by Eq. (6). The relation between the

bases {ψ̃(k)
i }i,k and {|E(k)

i 〉}i,k, as well as the choices
of U (k)

nc and the ordering of the energies Ẽi,m leave
room for adjusting the final energy cost.

The exact form of the unbiased and maximally
(but not perfectly) correlated lowest energy states
depends both on ρS and requires diagonalization
of HP . We now present a solution for an example
case and refer to Appendix A.IX for a detailed
step-by-step instruction.

5 Energy cost of measurements
We now investigate the relation between the energy
cost ∆E of an unbiased measurement achieving the
maximum correlation Cmax between a system and the
pointer. Here, we wish to showcase different ways of
increasing Cmax, which depends on temperature and
dimension. It is readily seen from Eq. (5) that Cmax
increases when the pointer size is increased at fixed
temperature or when the initial temperature is low-
ered at fixed pointer size. While Eq. (6) provides a
general form for ρ̃SP , quantitative insight about ∆E
cannot be gained without fixing the pointer Hamilto-
nian. An exception is when the pointer dimension is
infinite. There, the third law of thermodynamics can
be circumvented by using (a part of) the pointer as
a ‘fridge’ and creating asymptotically pure subspaces
(see, e.g., [27]), a scenario which we include as a lim-
iting case in our analysis. For the general case we
refer to Appendix A.IX, but here, as a concrete ex-
ample (described in more detail in Appendix A.VIII),
we will consider a single-qubit system and a pointer
consisting of N initially non-interacting qubits with
identical Hamiltonians HP .

We have ρ̃SP = Ucorr (ρS ⊗ τP (β)⊗N )U†corr, where
from now on we take τP (β) = 1/ZP (|0 〉〈0 | +
e−βEP |1 〉〈1 |) with the partition function ZP =
tr[e−βHP ]. Since we would like to increase Cmax as
much as possible and we know that Cmax depends on
the initial temperature of the pointer, we also consider
cooling the pointer prior to the correlating interaction
in order to get closer to a faithful result.

In principle, there exist many models of refrigera-
tion, e.g., [16]. To achieve ground state cooling, how-
ever, some form of resource has to diverge. For in-
stance, infinite time is required in adiabatic Landauer
erasure [1], infinite energy in finite size fridges [16],
or infinite complexity (or time) in fridges of infinite
size [27]. In short, quantum measurements inherit the
limitations imposed by the third law of thermodynam-
ics [12, 15]. Since our example also aims to quantify
the energy cost of correlations with increasing pointer
size N , including fridges of arbitrary size may compro-
mise statements about correlations costs at fixed N .
We therefore consider a fridge model of the same type
and size as the pointer, i.e., for each pointer qubit we
add one fridge qubit, see Fig. 2. For larger refriger-
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Figure 2: The measurement procedure. In step I an N -qubit
pointer is coupled to an N -qubit fridge and cooled from β
to β0. In step II, a unitary correlates the pointer with the
unknown qubit system.

ation systems the cost of cooling could be decreased
by a constant factor (see [16]), but would still diverge
as one approaches zero temperature unless the fridge
size is itself infinite.

Within this framework, we describe the mea-
surement by two consecutive unitary operations,
which we call cooling and correlating. The to-
tal transformation on the system, pointer, and
fridge is Utot (ρS ⊗ τP (β)⊗N ⊗ τF (β)⊗N )U†tot,
where τF (β) = 1/ZF (|0 〉〈0 | + e−βEF |1 〉〈1 |) and
Utot = (Ucorr ⊗ IF ) · (IS ⊗Ucool), see Fig. 2. Both uni-
taries drive the respective systems out of equilibrium
and come at a thermodynamic cost. Neglecting the
price for perfect control over these operations, the
work cost of implementing them is lower-bounded
by the total energy change of the system, pointer,
and fridge, W ≥ ∆E. The total cost in energy
can be split into the sum of the two parts: cooling
and correlating, which we write ∆E = ∆EI + ∆EII.
Our objective is to minimise ∆E when performing
a non-ideal measurement for a fixed value of the
correlation function C(ρ̃

SP
) = Cmax < 1.

6 Minimal energy cost
To minimise ∆EI we use Ref. [16], which details
the optimal cost for the single-qubit fridge. Cooling
the pointer from T = 1/β to EP/(βEF ) such that
τP (β)⊗N 7→ τP (βEFEP )⊗N requires at least

∆EI = N(EF − 1)
(

1
e−βEF + 1 −

1
e−βEP + 1

)
. (7)

To minimise ∆EII we are interested in determining
minUcorr

∆EII such that C(ρ̃
SP

) = Cmax(β). For the
case of a single-qubit system and N -qubit pointer
(with N odd), we have

Cmax(β) = 1
ZN

N/2∑

k=0

(
N

k

)
e−kEP β . (8)

For even N , the formula is slightly different with the
same qualitative behaviour. As expected, in the limit
of infinite pointer size (N → ∞) for fixed β, or in
the limit of zero temperature (β → ∞) for any N ,
the correlations become perfect, limN→∞ Cmax(β) =
limβ→∞ Cmax(β) = 1. In Appendix A.VIII, we con-
struct the optimal unitary Uopt that solves the op-
timisation problem for ∆EII for arbitrary N and β,
i.e., the unitary that achieves the algebraic maximum
correlation for minimal energy cost. In particular,
this construction allows us to specify an analytic ex-
pression for ∆EII in terms of β, N , and ρS, which
implies an achievable lower bound on the minimal en-
ergy cost of non-ideal measurements that approximate
ideal ones as well as possible.

Note that in the limit N → ∞ the energy cost of
achieving Cmax(β) is finite but infinite time (or full
control over N -body interactions with N →∞) is re-
quired (see Appendix A.VIII). For any finite N , the
only way to achieve correlations higher than Cmax(β)
is to cool the pointer. Thus, we consider the scenario
where starting at some finite β, we cool the pointer
(β → β0 > β) and then correlate it with the sys-
tem to the algebraic maximum for the new temper-
ature Cmax(β0). Results for exemplary temperatures
are shown in Fig. 3 for N = 6. Within our cooling
paradigm, the energy cost for reaching the ground
state in finite time is infinite. Other paradigms allow
cooling to the ground state using finite energy, but re-
quire infinite time [27]. Thus, without access to pure
states, a measurement satisfying properties (i) – (iii)
has an infinite resource cost. The cost for the max-
imally correlating unitary Ucorr is always finite and

given by ∆E (C=1)
II = 1

2EP .

7 Discussion
The projection postulate is a central concept within
the foundations of quantum mechanics, asserting that
ideal projective measurements leave the system in a
pure state corresponding to the observed outcome.
All interpretations of quantum mechanics must be
compatible with this statement together with the
Born rule assigning the probabilities. However, the
existence of such ‘true’ projections is usually taken
for granted. Here, we have discussed a self-contained
description of measurements from a thermodynamic
point of view. We have shown that, when their exis-
tence is not assumed, ideal finite-time projective mea-
surements have an infinite cost.

We argued that a necessary condition for ideal mea-
surements is to be faithful, i.e., have perfect correla-
tion between the system and pointer. However, this
requirement incurs infinite costs unless pure states are
freely available. Nonetheless, ideal measurements can
be approximated by non-ideal, unbiased ones to ar-
bitrary precision at finite energy cost. We find that
the correlation achieved by the best unbiased mea-
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Figure 3: Cost of a non-ideal projective measurement of a
qubit system using a 6-qubit pointer. Each pointer qubit is in
the state τP (β). We start from room temperature (≈ 300 K)
and choose an energy gap in the microwave regime such that
βEP = 1/30. Each point on the horizontal indicates the
maximal algebraic correlation Cmax(β′, N = 6) achievable
for a fixed value β′ = βEF

EP
(or equivalently, fixed EF ), which

is the result of cooling the 6-qubit pointer from β to β′ us-
ing refrigeration qubits with gaps EF . For each correlation
value, the refrigeration cost ∆EI and the cost ∆EII of max-
imally correlating the thermal state at inverse temperature
β′ are shown. The inset shows the relevant energy scale
for correlating the system and pointer since the cooling cost
significantly dominates the correlating cost.

surement is universally bounded by the largest dP/dS
eigenvalues of the pointer. To gain quantitative in-
sight into this cost, we considered the measurement
of a single qubit by an N -qubit pointer. We provided
analytic expressions for the minimal energy cost for
unitarily achieving maximal correlation for any initial
temperature and any N . We find that correlations
can be increased by increasing the pointer size and by
cooling the pointer.

While the three mentioned properties capture the
basic features of ideal measurements, they are not suf-
ficient to characterise the ‘quantum to classical’ tran-
sition. Classical outcomes additionally feature ‘ro-
bustness’, where small perturbations of the pointer do
not significantly alter the observed outcomes. This is
an important consideration for broadcasting measure-
ment outcomes. In our qubit model, this is taken into
account by the size of the subspaces the system is cor-
related with, i.e., the number of pointer particles, N .

The insight that ideal measurements carry a diverg-
ing cost also sheds light on thermodynamics because it
implies that, in practice, all measurements that can be
performed are intrinsically non-ideal. Consequently, a
central question is how well one can approximate ideal
measurements and which consequences these approxi-
mate realizations have on tasks that arise in quantum
thermodynamics. For instance, to interpret work as a
random variable in the quantum regime, two projec-
tive measurements are commonly assumed to charac-
terize work [28–30]. The impossibility of these mea-

surements with finite work, prompts two questions
(recently studied in [31]): (a) what is the impact of
measurement imperfection on the observed fluctua-
tions and (b) what is the total work cost of observing
work fluctuations imperfectly. Furthermore, in quan-
tum information-based engines [24, 32, 33], it would
be highly relevant to incorporate measurement imper-
fection and work cost into the efficiency in addition
to other constraints [34]. These insights could also
be useful for quantum information processing, e.g.,
bounding the minimal power consumption of quan-
tum computers employing syndrome measurements
for error correction.
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Appendix: Mathematical Model for
Measurement Procedures
In this Appendix, we give a detailed description of
unbiased measurement procedures introduced in the
main text. As we have argued, ideal measurements
(unbiased, faithful, and non-invasive) are not gener-
ally implementable in finite time or with finite en-
ergy. In practice, real measurements may nonetheless
approximate ideal measurements by investing energy;
loosely speaking, the approximation becomes better,
the more energy that is invested. To make this more
precise, we will explicitly determine the fundamental
energy cost of projective1 measurements.

1Arbitrary quantum measurements represented by positive-
operator-valued measures (POVMs) can be realized by projec-
tive measurements on a Hilbert space obtained by appending
an auxiliary system of, at most [35], the same dimension as
the original system. We therefore concentrate on projective
measurements.

A.I Framework
System. We consider a quantum system S with
Hilbert space HS of dimension dS = dim(HS)
initially in an arbitrary unknown quantum state
represented by a density operator ρS ∈ L(HS), i.e.,
a Hermitian operator with tr(ρS) = 1 in the space
of linear operators L(HS) over the system Hilbert
space HS. We are then interested in describing
(projective) measurements of the system w.r.t.
a basis {| i 〉

S
}i of HS, which we take to be the

eigenbasis of the system Hamiltonian HS, i.e., we
can write HS = ~

∑
i Ωi | i 〉〈 i |S, where ~(Ωj − Ωi)

is the energy gap between the i-th and j-th levels.
For instance, an example that we will focus on later
is that of the simplest quantum system — a qubit
— with vanishing ground state energy and energy
gap ES = ~Ω. That is, HS = C2, and the system
Hamiltonian HS has eigenstates |0 〉

S
and |1 〉

S
and

spectral decomposition HS = ES |1 〉〈1 |S.

Pointer. Similarly, we consider a pointer system P
with Hilbert space HP of dimension dP = dim(HP )
and Hamiltonian HP . We then take the resource-
theoretic point of view that the pointer is initially
in a state that is freely available, i.e., a thermal state
τP (β) ∈ L(HP ) at ambient temperature T = 1/β.
We order the spectrum of the pointer Hamiltonian
in terms of its excitations into dS sectors of size
dP/dS, i.e., HP =

∑dS−1
k=0

∑dP /dS−1
i=0 E(k)

i |E(k)
i 〉〈E(k)

i |
with E(k)

i ≤ E(k′)
j ∀i, j for k′ > k. The thermal

(Gibbs) state is given by

τP (β) =
dS−1∑

k=0

dP /dS−1∑

i=0
p(k)
i |E(k)

i 〉〈E(k)
i | (A.1)

where p(k)
i = exp

(
−βE(k)

i

)
/Z and Z is the pointer’s

partition function Z = tr(e−βHP ) =
∑
i,k e

−βE(k)
i .

Measurement procedure. We now wish to
consider a measurement of the system’s energy,
i.e., of the observable HS, or, in other words, a
projective measurement of the system in the energy
eigenbasis2. The corresponding measurement proce-
dure may be defined via a completely positive and
trace-preserving (CPTP) map E : L(HSP )→ L(HSP ),
where HSP = HS ⊗ HP , that maps ρSP = ρS ⊗ τP to
a post-measurement state ρ̃SP ∈ L(HSP ). This may
be understood as a generalized interaction between
the system, the pointer, and some auxiliary system.
Here, we do not wish to address the question of which
measurement outcome is ultimately realized (which
pure state the system is left in), or how and why

2Note that a projective measurement of the system in any
other (orthonormal) basis can be subsumed into this discussion
by including an additional unitary transformation (and its en-
ergy cost) on the initial state ρS to switch between the energy
eigenbasis and the desired measurement basis.
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this may be the case. That is, we do not attempt
to make statements about what is often perceived
as the “measurement problem”, but rather take the
point of view that system and pointer are left in a
joint state in which the internal states of the system
are correlated with the internal states of the pointer.
Each of the latter is designated to correspond to one
of the system states | i 〉

S
, such that, upon finding

the pointer in a state chosen to reflect | i 〉
S
, one

concludes that the measurement outcome is “i”.
More precisely, each eigenstate | i 〉

S
of the measured

observable of the system is assigned a set {| ψ̃(i)
n 〉P}n

of orthogonal states of the pointer corresponding to
a projector Πi =

∑
n | ψ̃(i)

n 〉〈 ψ̃(i)
n |. The projectors are

chosen to be orthogonal and to form a complete set,
i.e., ΠiΠj = δijΠi and

∑
i Πi = 1P . In an ideal mea-

surement, upon obtaining the outcome “i”, one may
further conclude that the post-measurement system is
left in the state | i 〉

S
. This is one of three features that

can be identified for ideal projective measurements.
As explained in the main text, ideal measurements are

unbiased:

tr
[
1S ⊗Πi ρ̃SP

]
= tr

[
| i 〉〈 i |

S
ρS] = ρii ∀ i, (A.2)

faithful:

C(ρ̃SP ) :=
∑

i

tr
[
| i 〉〈 i |

S
⊗Πi ρ̃SP

]
= 1, (A.3)

non-invasive:

tr
[
| i 〉〈 i |

S
⊗ 1P ρ̃SP

]
= tr

[
| i 〉〈 i |

S
ρS
]

= ρii ∀ i.
(A.4)

A.II Example: 2-Qubit Measurements
To illustrate the properties above and to understand
why these conditions are not met by general non-ideal
measurement procedures with finite energy input, we
consider a simple example. Consider a measurement
procedure using a single pointer qubit and assume
that by some means it has been prepared in the
ground state, i.e., ρP = |0 〉〈0 |

P
. We model the inter-

action with the pointer by applying a controlled NOT
operation UCNOT = |0 〉〈0 |

S
⊗ 1P + |1 〉〈1 |

S
⊗XP , with

the usual Pauli operator X = |0 〉〈1 |+ |1 〉〈0 |. Denot-
ing the matrix elements of the initial state as ρij =
〈 i | ρS |j 〉, we can then write the post-measurement
state ρ̃SP as

ρ̃SP = UCNOT ρSPU
†
CNOT =

∑

i,j=0,1
ρij | ii 〉〈jj | . (A.5)

The system and pointer are now perfectly (classically)
correlated in the sense that whenever the pointer is
found in the state |0 〉

P
(|1 〉

P
), the system is left in the

corresponding state |0 〉
S

(|1 〉
S
). In other words, for

the choice Πi = | i 〉〈 i |
P

, we find that the measurement
is faithful,

C(ρ̃SP ) =
∑

i=0,1
tr
[
| ii 〉〈 ii | ρ̃SP

]
=
∑

i=0,1
ρii = tr[ρS] = 1 .

(A.6)

The post-measurement system state ρ̃S = trP [ρ̃SP ] =∑
i ρii | i 〉〈 i |S is in general different from the initial

system state since it not longer has any off-diagonal
elements w.r.t. the measurement basis, but the mea-
surement is nonetheless non-invasive since the diago-
nal elements match those of the initial system state
ρS. At the same time, the chosen unitary UCNOT guar-
antees that the probabilities for finding the pointer in
the states |0 〉

P
and |1 〉

P
, match those of the original

system state, i.e., for i = 0, 1 we have

tr
(
| i 〉〈 i |

P
trS(ρ̃SP )

)
= tr(| i 〉〈 i |

S
ρS) = ρii . (A.7)

Consequently, the measurement is not biased towards
one of the outcomes and reproduces the statistics of
the original system state, while being perfectly corre-
lated (i.e., faithful).

However, in general strong correlation and unbi-
asedness of the measurement do not imply one an-
other. For instance, one can construct an unbiased
but also generally uncorrelated measurement by re-
placing UCNOT with USWAP = |00 〉〈00 | + |01 〉〈10 | +
|10 〉〈01 | + |11 〉〈11 |, leaving the system in the state
|0 〉

S
no matter which state the pointer is in. Although

all available information about the pre-measurement
system is thus stored in the pointer, measuring the lat-
ter reveals no (additional) information about the post-
measurement system. Alternatively, consider the uni-
tary |1 〉〈1 |

S
⊗1P+|0 〉〈0 |

S
⊗XP instead of UCNOT, both

of which lead to the same correlation C(ρ̃SP ), but the
probabilities for observing the two outcomes are now
exchanged w.r.t. to ρS, i.e., the pointer is found in
the state |0 〉

P
(|1 〉

P
) with probability ρ11 (ρ00) after

the interaction.
For the purpose of examining real measurements,

these examples are of course pathological due to the
assumption of reliably preparing the pointer in a pure
state (without having to have performed a projective
measurement in order to model a projective measure-
ment or having to cool to the ground state using finite
resources [12]). Let us therefore relax this assumption
and assume instead that the pointer has been pre-
pared at some finite non-vanishing temperature T =
1/β, such that ρP = p |0 〉〈0 |

P
+(1−p) |1 〉〈1 |

P
for some

p = (1 + e−ωβ)−1 = Z−1 with 0 < p < 1. A quick
calculation then reveals that the previously perfect
correlations are reduced to C(ρ̃SP ) = p = Z−1 < 1
and that the measurement procedure using UCNOT is
in general biased, i.e.,

tr
[
| i 〉〈 i |

P
trS[ρ̃SP ]

]
= ρii(2p− 1) + 1− p . (A.8)

However, while we generally have to give up the
notion of a perfect projective measurement in the
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sense that the outcomes are perfectly correlated with
the post-measurement states (as we have shown in
the main text), one may retain the unbiasedness of
the measurement. That is, if we replace UCNOT by
Uunb. = |00 〉〈00 |+ |01 〉〈11 |+ |11 〉〈10 |+ |10 〉〈01 |, we
obtain the same imperfect correlation value C(ρ̃SP ) =
p = Z−1, but the unbiasedness condition of Eq. (A.7)
is satisfied. To reiterate, measurement procedures us-
ing finite resources (finite time, finite energy, and fi-
nite complexity, i.e., operations with finite interac-
tion range), cannot be ideal, since finite resources are
not sufficient to prepare pointers in the required pure
states. Realistic measurement procedures hence are
non-ideal.

A.III Non-Ideal Measurement Procedures
When any one of the three properties (A.2), (A.3) or
(A.4) fails to hold, we call the corresponding measure-
ment procedure non-ideal. For non-ideal measure-
ments, the relation between the remaining properties
is more complicated. In particular, none of the three
properties alone implies any of the other two. For
instance, consider an ideal post-interaction state

ρ̃SP =
∑

i

ρii | i 〉〈 i | ⊗ ρ(i) + off-diag. , (A.9)

where we have not explicitly written the off-diagonal
elements w.r.t. the basis {| i 〉 ⊗ | ψ̃(j)

n 〉}i,j,n and
ρ(i) is a pointer state that is associated to one and
only one of the outcomes i, that is, Πiρ

(j) = δijρ
(j).

Any measurement procedure based on a map E
for which the values ρii in (A.9) are replaced with
arbitrary probabilities pi 6= ρii, results in a joint
post-interaction state ρ̃SP satisfying (A.3), but not
(A.2) or (A.4), resulting in a non-ideal measurement
that is faithful, but neither unbiased or non-invasive.
Similarly, the state ρ̃SP = ρS ⊗ ρP obtained from a
trivial interaction E [ρSP ] = ρSP complies with (A.4),
but not with (A.3) or (A.2). Finally, the map E
realizing a complete exchange of the initial system
and pointer states (assuming, for the purpose of this
example that dS = dP ), results in an unbiased (A.2)
measurement procedure that does not satisfy either
(A.3) or (A.4).

Satisfying any single one of the three properties
is hence not sufficient for distinguishing ideal from
non-ideal measurements. When two out of the three
properties hold, things become more subtle. In two
cases, a joint final state ρ̃SP satisfying a pair of prop-
erties implies the third property, and hence that the
measurement is ideal for the particular given initial
system state ρS. First, a measurement that is both
faithful (A.3) and unbiased (A.2) implies that it is
also non-invasive (A.4). To show this, we start with
the property of unbiasedness and, summing the right-
hand side of Eq. (A.2) over all i, we have

∑
i ρii = 1.

The left-hand side of Eq. (A.2) thus gives

∑

i

tr
[
1S ⊗Πi ρ̃SP

]
=
∑

i,j

tr
[
|j 〉〈j |

S
⊗Πi ρ̃SP

]
= 1.

(A.10)

At the same time, property (A.3) demands that the
sum in the second step of (A.10) yields 1 already just
for the terms where i = j, implying

∑

i 6=j
tr
[
|j 〉〈j |

S
⊗Πi ρ̃SP

]
= 0. (A.11)

Since all diagonal matrix elements of a density opera-
tor are non-negative, this further implies tr

[
|j 〉〈j |

S
⊗

Πi ρ̃SP
]

= 0 ∀i 6= j, which we can insert back

into (A.2) to see that tr
[
| i 〉〈 i |

S
⊗ Πi ρ̃SP

]
= ρii. In-

serting all of this into the left-hand side of Eq. (A.4)
together with 1P =

∑
j Πj , we obtain

tr
[
| i 〉〈 i |

S
⊗
∑

j

Πj ρ̃SP
]

= tr
[
| i 〉〈 i |

S
⊗Πi ρ̃SP

]
= ρii,

(A.12)

which concludes the proof that unbiased and faithful
measurements are also non-invasive.

Second, a measurement that is both faithful (A.3)
and non-invasive (A.4) is also unbiased (A.2). Now
starting with (A.4), we again sum the left-hand side
over all i and resolve the identity 1P =

∑
j Πj , to

obtain
∑

i,j

tr
[
| i 〉〈 i |

S
⊗Πj ρ̃SP

]
=
∑

i

ρii = 1. (A.13)

This time, unbiasedness (A.2) implies

∑

i 6=j
tr
[
| i 〉〈 i |

S
⊗Πj ρ̃SP

]
= 0, (A.14)

and in turn tr
[
| i 〉〈 i |

S
⊗ Πj ρ̃SP

]
= 0 ∀i 6= j, as be-

fore. Inserting this into (A.4) then implies tr
[
| i 〉〈 i |

S
⊗

Πi ρ̃SP
]

= ρii. Finally inserting into the left-hand
side of (A.2) yields

tr
[
1S ⊗Πi ρ̃SP

]
=
∑

j

tr
[
|j 〉〈j |

S
⊗Πi ρ̃SP

]

= tr
[
| i 〉〈 i |

S
⊗Πi ρ̃SP

]
= ρii, (A.15)

confirming the unbiasedness condition.
For the remaining combination this is not the case.

A measurement procedure that is unbiased (A.2) and
non-invasive (A.4) for a fixed system state ρS is not
necessarily faithful (A.3). Consider, e.g., the initial
single-qubit system state ρS = 3

4 |0 〉〈0 |+ 1
4 |1 〉〈1 |, i.e.,

where ρ00 = 3
4 and ρ11 = 1

4 , and the two-qubit final
state ρ̃SP =

∑
m,n=0,1 |m,n 〉〈m,n | with p01 = p10 =

p11 = 1
8 and p00 = 5

8 . For Πi = | i 〉〈 i |
P

, one has the
reduced states trS(ρ̃SP ) = trP (ρ̃SP ) = ρS, so we have
unbiasedness and non-invasiveness, but C(ρ̃SP ) = 3

4 <
1.
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Moreover, the measurement procedure (corre-
sponding to the transformation above (whose details
are not given in the example) may not be unbiased or
non-invasive for other initial system states ρS. This
singles out the property of faithfulness when one is in-
terested in checking the properties of a measurement
procedure for any given initial system state. Nonethe-
less, caution is advisable here. For a particular initial
state ρS of the system, all three properties may be sat-
isfied, yet, this may not be so for other initial states.
Simply consider the example in Eq. (A.8). For an
initial state with ρ00 = ρ11 = 1

2 , the measurement
satisfies all three properties, but for p < 1 the mea-
surement procedure is biased and has non-perfect cor-
relation for almost all (other) states ρS.

Indeed, demanding that any of the properties hold
only for particular initial system states ρS is some-
what contradictory to the notion of performing a mea-
surement that reveals previously unknown informa-
tion about a system. In other words, measurements
should not require detailed knowledge about ρS to en-
sure that one may trust the measurement outcomes,
or inferences made from them. The definitions of the
properties (A.2), (A.3) and (A.4) must hence be ex-
tended to demand that measurement procedures are
only called unbiased, faithful, or non-invasive, if the
respective properties (A.2), (A.3) or (A.4) hold for all
initial systems states ρS.

With such an extended definition, one then indeed
finds that any two properties imply the third. In
particular, it is then the case that measurement pro-
cedures that are unbiased and non-invasive, are also
faithful, and thus ideal. The proof of this statement,
relies on insights into the general structure of all maps
representing unbiased measurement procedures, and
as such appears later in Appendix A.VI. In purely
qualitative terms, maps that are either unbiased or
non-invasive need to transfer the diagonal elements of
the system state ρS to particular (different) subspaces
of the joint Hilbert space of system and pointer. The
only way to simultaneously satisfy both the require-
ments for unbiasedness and non-invasiveness for arbi-
trary ρS forces all information to be concentrated in
the subspaces corresponding to the images of the pro-
jectors | i 〉〈 i | ⊗ Πi, such that the resulting state ρ̃SP
satisfies (A.3) independently of the details of ρS.

Ultimately, this means that only one of the three
properties can be satisfied exactly for all initial system
states in any realistic measurement procedure. Given
that the constraint of finite resources rules out that
realistic non-ideal measurements are faithful, we have
a choice between the measurement being unbiased or
non-invasive. Arguably, biased measurements that
are not even faithful are of little use, since the out-
comes would not provide any level of certainty about
either the pre- or post-measurement system state. In
the following, we are therefore interested in unbiased
measurement procedures for which the correlations

between the system and the pointer are as large as
possible. Given such non-ideal measurement, we then
wish to minimize the associated energy costs.

A.IV General Unbiased Measurements
Here, we will identify the basic structure and im-
portant properties of a general model of non-ideal
measurement procedures. To do so, we separate what
we believe to accurately model such a measurement
procedure into two steps. These are:

I Preparation: Some energy is invested to pre-
pare the pointer system in a suitable quantum
state.

II Correlating: The pointer interacts with the
system to be measured, creating correlations be-
tween them.

A.IV.1 Step I: Preparation

Before interacting with the system, the pointer can
be prepared in a suitable quantum state ρP at the ex-
pense of some initial energy investment ∆EI account-
ing for the (CPTP) transformation EI : L(HP ) →
L(HP ) mapping τ(β) to ρP = EI[τ(β)]. In particular
it may be desirable to lower the entropy of the initial
pointer state. In principle, one may use any given
amount of energy to prepare an arbitrary pointer
state that is compatible with the specified energy and
whose entropy is lower than that of τ(β). The energy
cost for reaching a particular state ρP is bounded from
below by the free energy difference, i.e.,

∆EI ≥ ∆F
(
τ(β)→ ρP

)
= ∆EP − T∆SP , (A.16)

with ∆EP = tr
[
HP (ρP − τ(β))

]
and ∆SP = S

(
ρP
)
−

S
(
τ(β)

)
, and where S(ρ) = −tr

[
ρ log(ρ)

]
is the

von Neumann entropy. However, the exact work cost
of the preparation depends on the control over the
system and the available auxiliary degrees of freedom,
and may exceed this bound. In particular, the free en-
ergy difference to the ground state is finite although
this state cannot be reached with a finite work in-
vestment in finite time [12]. The precise resource re-
quirements in terms of energy, control, and time for
preparing arbitrary quantum states are hence diffi-
cult to capture3, whereas the refrigeration of quan-
tum systems is a well-understood task, whose energy
cost has been quantified for various levels of control
one assumes about the quantum systems involved in
the cooling procedure [16].

3Certainly, any such preparation can be described by a
CPTP map, which in turn can be seen as a unitary acting on
ρP ⊗|Φ 〉〈Φ | in a Hilbert space enlarged by an auxiliary system
with Hilbert space HA 3 |Φ 〉. However, this brings one back
to the question of quantifying the cost for preparing the pure
state |Φ 〉 of the auxiliary system.
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It is therefore practically useful (and reasonable) to
assume that the preparation only involves refrigera-
tion. That is, we assume in the following that the tem-
perature of the pointer is lowered from T to T0 ≤ T ,
reaching a thermal state τ(β0) with β0 = 1/T0. On
the one hand, step I thus becomes less general than
it could potentially be since one does not explore the
entire Hilbert space HP . On the other hand, the ther-
mal state can be considered to be energetically opti-
mal, since it minimizes the energy at fixed entropy.
Moreover, at fixed energy the thermal state also max-
imizes the entropy and hence minimizes the free en-
ergy, which in turn bounds the work cost from below.

A.IV.2 Step II: Correlating

During the second step of the measurement proce-
dure, the system interacts with the pointer in such a
way that correlations between the two are established
via a CPTP map EII : L(HSP ) → L(HSP ) that maps
ρSP = ρS ⊗ ρP to ρ̃SP = EII

[
ρSP
]
. A particularly im-

portant special case is the case of unitary correlating
maps U , i.e., such that ρ̃SP = UρSPU

†, representing
measurement procedures where the joint system of S
and P can be considered to be closed for the purpose
of the correlating step. Then, the energy cost for the
second step can be calculated via

∆EII = tr
[
(HS +HP )(ρ̃SP − ρSP )

]
. (A.17)

In any case the generated correlations can in prin-
ciple be (but need not be) genuine quantum corre-
lations. For (non-ideal) projective measurements as
defined here, it nonetheless suffices that classical cor-
relations are established with respect to the measure-
ment basis (here the eigenbasis of HS) and a chosen
basis of the pointer system. More specifically, we as-
sign a set of orthogonal projectors

Πi :=
∑

n

| ψ̃(i)
n 〉〈 ψ̃(i)

n | , (A.18)

with ΠiΠj = δijΠi (in particular, 〈 ψ̃(i)
m | ψ̃(j)

n 〉 =
δijδmn) and

∑
i Πi = 1P . The orthogonality and com-

pleteness of the projectors ensure that every pointer
state is associated with a state of the measured sys-
tem, i.e., every outcome provides a definitive mea-
surement result “i”. We further amend the correla-
tions function defined in Eq. (A.6) for a single-qubit
pointer to reflect the use of the more general projec-
tors, i.e., we redefine the quantifier C(ρ̃SP ) as

C(ρ̃SP ) :=
∑

i

tr
[
| i 〉〈 i |

S
⊗Πi ρ̃SP

]
. (A.19)

A.IV.3 Unbiased measurements

We are now in a position to give a formal definition
of what we consider as an abstract measurement
procedure.

Definition 1: Measurement procedure

A measurement procedure M(β) that realizes a
(non-ideal) projective measurement at ambient
temperature T = 1/β of an (unknown) quan-
tum state ρS ∈ L(HS) w.r.t. to an orthonor-
mal basis {|n 〉}n of HS is given by the tuple
(HP , HP ,Π, E), consisting of a pointer Hilbert
space HP , a pointer Hamiltonian HP ∈ L(HP ), a
complete set Π = {Πi}i of orthogonal projectors
on HP , and a CPTP map E : L(HSP ) → L(HSP )
with HSP = HS ⊗ HP , together with the induced
CPTP map EM : L(HS)→ L(HSP ) given by

EM : ρS 7→ ρ̃SP = E [ρS ⊗ τ(β)]. (A.20)

Note that any definition of a thermal state τ(β)
implies that the state has full rank. This definition
includes, in particular, the case that we consider
here, where the map E = EII ◦ (1S ⊗ EI) is split into
two separate steps. As we have already motivated in
our earlier example, we are interested in considering
measurement procedures that represent the measured
quantum state without bias. While perfect corre-
lations cannot be guaranteed in this way, one may
however ask that averages of the measured quantity
match for the pointer and the system. Moreover, it is
desirable that this is so independently of the specific
initial states of the system and the pointer. All of
this is captured by the following definition.

Definition 2: Unbiased measurement

A measurement procedure M(β) is called unbi-
ased, iff tr

[
ΠitrS(ρ̃SP )

]
= tr[| i 〉〈 i |

S
ρS] ∀i and ∀ρS.

Since we wish to restrict our further considerations
to unbiased measurements, it will be useful to know
more about the structure of these measurement
procedures, in particular, about the involved CPTP
map E and projectors Πi, given that one has selected
a suitable pointer system with Hilbert space HP and
Hamiltonian HP . To this end, note that our previous
example using UCNOT was unbiased only for pointers
that can be prepared in the ground state (or any
pure state for that matter). This can only be the
case if the initial temperature vanishes or if infinite
resources are available in step I, whereas we are
interested in describing more realistic conditions. To
capture this, we formalise the following:

Definition 3: Finite-resource measurement

A measurement procedureM(β) at a nonzero am-
bient temperature T = 1/β uses finite resources
if the map EM is rank non-increasing.
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On the other hand, measurement procedures which
reduce the rank use either infinite energy E, take in-
finite time t (an infinite sequence of finite interaction
range operations) or are infinitely complex (infinite
interaction range operations) [12, 14–17, 27]. Now,
in order to take a first step towards unraveling the
structure of unbiased measurements we formulate the
following lemma.

Lemma 1

All unbiased finite-resource measurement proce-
duresM(β) with (thermal, full-rank) pointer sys-
tem with Hilbert space HP , Hamiltonian HP , and
orthogonal projectors Πi can be realized by CPTP
maps E of the form E = EII ◦ (1S ⊗ EI), where EI

is a CPTP map from L(HP ) to itself (achievable
in finite time t and satisfying ∆EI <∞), and the
CPTP map EII from L(HSP ) to itself has Kraus
operators Kl =

∑
i

K(i)
l with

K(i)
l =

dS−1∑

j=0

dP−1∑

n=0

di−1∑

m=0
k(i, l)
jmn |j 〉〈 i |S ⊗ | ψ̃(i)

m 〉〈ψn |P ,

(A.21)

with dS = dim(HS), dP = dim(HP ) ≥ dS, and
coefficients k(i, l)

jmn such that

∑

l

(K(i)
l )†K(i)

l = | i 〉〈 i |
S
⊗ 1P . (A.22)

Proof of Lemma 1. Before we get into the tech-
nical details of the proof, let us phrase the Lemma 1
more informally. It states that the map E consists
of an arbitrary (finite energy, ∆EI < ∞, finite time
t < ∞) preparation of the pointer (EI), followed by
a map EII that maps the subspaces | i 〉

S
to those cor-

responding to Πi, respectively. Moreover, note that
unbiasedness of course implies that the pointer sys-
tem must be large enough (dP ≥ dS) to accommodate
all the possible measurement outcomes. Let us then
prove the lemma. As mentioned before, the CPTP
map E may be separated into a map EI acting nontriv-
ially only on the pointer Hilbert space, and a CPTP
map EII acting on the resulting state ρSP = ρS ⊗ ρP ,
which we can write with respect to the basis | i 〉

S
as

ρSP =




ρ00ρP · · · · ·
· ρ11ρP · · · ·
· · ρ22ρP · · ·
...

...
...

. . .



,

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
| 0 〉S | 1 〉S | 2 〉S · · ·

(A.23)

Without loss of generality, we can then write the
final state ρ̃SP = EII[ρSP ] with respect to the product
basis {| i 〉

S
⊗ | ψ̃(j)

m 〉P}i,j,m in the form

Π0 Π1 Π2 Π0 Π1 Π2 Π0 Π1 Π2³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅
⋮ A01 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
⋅ ⋯ A02 ⋅ ⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅
⋅ ⋯ ⋅ ⋱ ⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅
⋅ ⋯ ⋅ ⋅ A10 ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅
⋮ ⋱ ⋮ ⋮ ⋮ A11 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
⋅ ⋯ ⋅ ⋅ ⋅ ⋯ A12 ⋅ ⋅ ⋯ ⋅ ⋅
⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋱ ⋅ ⋯ ⋅ ⋅
⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅ A20 ⋯ ⋅ ⋅
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ A21 ⋮ ⋮
⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅ ⋅ ⋯ A22 ⋅
⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋅ ⋅ ⋯ ⋅ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∣0 ⟩S ∣1 ⟩S ∣2 ⟩S ⋯

(A.24)

where we have indicated the columns corresponding
to the subspaces of fixed vectors | i 〉

S
and projectors

Πi for i = 1, 2, 3, and dots indicate matrix elements
that may be nonzero but are not explicitly shown. In
particular, the latter can include subspaces for i > 3,
and the case for dS ≤ 3 can be obtained by truncating
the shown matrix by removing the corresponding rows
and columns. The colored sub-blocks A0i, A1i, A2i
and so forth are di × di block matrices in terms of
which the unbiasedness condition of Def. 2 can be
written as

dS−1∑

j=0
tr[Aji] = ρii ∀i. (A.25)

Crucially, the unbiasedness condition in Eq. (A.25) is
to hold for all possible system states ρS, and hence
for all possible values of ρii. This, in turn, implies
that all sub-blocks with second subscript i must be
proportional to ρii. That is Aji = ρiiÃji ∀ j with∑dS−1
j=0 tr[Ãji] = 1 ∀i. Since the unbiasedness con-

dition is not sensitive to terms appearing in the off-
diagonal blocks, a convenient representation of the
relevant terms of the post-interaction state ρ̃SP under
the map EII is :

ΓEII =




ρ00Ã00 ρ11Ã01 ρ22Ã02 · · ·
ρ00Ã10 ρ11Ã11 ρ22Ã12 · · ·
ρ00Ã20 ρ11Ã21 ρ22Ã22 . . .

...
...

...
. . .



, (A.26)

which we call the correlation matrix. Here it can im-
mediately be seen that the unbiasedness condition,
which implies

∑dS−1
j=0 tr[Ãji] = 1 says that the sum

of the trace of the blocks in column i of ΓE must be
equal to ρii for unbiasedness to hold4.

4Note that this representation is not square, since in princi-
ple the dimension of the matrix-valued entries of each column
are different. In the case that the map E representing the mea-
surement is unitary, the representation becomes square and the
dimension of all blocks across all columns is equal.
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From the initial state (A.23) and the final state
(A.24) it becomes apparent that unbiasedness can
be guaranteed for maps that connect the subspaces
corresponding to | i 〉

S
only with those correspond-

ing to Πi. More precisely, each of these connect-
ing maps can be viewed as an arbitrary CPTP map
E (i)

II from the dP -dimensional space spanned by the
vectors in the set {| i 〉

S
⊗ |ψn 〉P}n=0,...,dP−1, where

{|ψn 〉P}n is an arbitrary basis of HP , to the (dS×di)-
dimensional space spanned by the vectors in the
set {|j 〉

S
⊗ | ψ̃(i)

m 〉P}j=0,...,dS−1
m=0,...,di−1

. The Kraus operators

for these CPTP maps are precisely the {K(i)
l }l of

Eq. (A.21) and in matrix notation we may denote
these maps as

ρiiρP E
(i)
II7−→




A0i · · · · ·
· A1i · · · ·
· · A2i · · ·
.
.
.

.

.

.
.
.
.

. . .


 = ρii




Ã0i · · · · ·
· Ã1i · · · ·
· · Ã2i · · ·
.
.
.

.

.

.
.
.
.

. . .


 .

(A.27)

Since the domains as well as the images for different
i lie in orthogonal subspaces of HSP , the maps
E (i)

II can be combined to the map EII with Kraus
operators5 {Kl =

∑
iK

(i)
l }l. Once can check that the

unbiasedness condition is satisfied for these Kraus
operators by a simple calculation, which we will not
repeat here. If the initial ambient temperature is
nonzero and the measurement procedure uses finite
resources (time and energy), the pointer state ρP has
full rank and unbiasedness can only be achieved via
maps of the form mentioned, as claimed in Lemma 1,
which concludes the proof.

Inspecting again the example from Appendix A.II,
one notes that the controlled NOT operation UCNOT

is not of the form required for a finite-resource unbi-
ased measurement, as expected. However, when the
pointer can be prepared in a pure state (w.l.o.g. the
ground state |0 〉

P
) one observes that the measure-

ment procedure using UCNOT in the correlating step
becomes unbiased because some of the sub-blocks Aji
are only trivially proportional to ρii. In particular,
A01 = Ã01 = A10 = Ã10 = 0.

Having understood the general structure of all un-
biased measurements, we now want to turn to some
specific instances of such measurement procedures.

A.V Extremal Measurements
With the help of Lemma 1 we can now describe the
set of all unbiased measurements for a given quantum
system ρS and pointer. The measurement within this
set may further be categorized according to their spe-
cific properties, in particular, their energy cost, the
amount of correlations created between the system

5Note that the number of nonzero Kraus operators may be
different for each i, but one may always add trivial (vanishing)
Kraus operators to each set {K(i)

l
}l with fixed i.

and the pointer (how faithful the measurement is),
and the level of control required for their implementa-
tion (e.g., what type of auxiliary systems are available
and which operations can be performed on the sys-
tem, pointer, and auxiliaries). Given an (unknown)
quantum system S it would ideally be desirable to
answer the question: What is the maximal correla-
tion achievable between the system and any suitable
pointer given a fixed work input ∆E? A more re-
stricted version of this question is: What is the max-
imal correlation achievable between the system and a
particular pointer given a fixed work input ∆E?

Since we assume that the system state ρS is un-
known before the measurement, the correlation mea-
sure C̄ that we are interested in optimizing is obtained
from averaging C(ρ̃SP ) from Eq. (A.3) over all system
states. We observe that for any particular systems
state ρS, the correlation measure C(ρ̃SP ) does not de-
pend on any of the matrix elements of ρS except for
those on the diagonal, i.e.,

C(ρ̃SP ) = ρ00tr[Ã00] + ρ11tr[Ã11] + ρ22tr[Ã22] + . . . .
(A.28)

Averaging over all states ρS is hence equivalent to an
average over all probability distributions correspond-
ing to the diagonal of ρS. Moreover, for each of these
values ρii (i = 0, . . . , dS−1), the average over all prob-
ability distributions results in the value 1/dS, such
that the average of C(ρ̃SP ) is given by

C̄ = 1
dS

tr
[
Ã00 + Ã11 + Ã22 + . . .

]
, (A.29)

which, in terms of the representation presented in
Eq. (A.26), corresponds to taking the trace of the
blocks appearing along the diagonal.
Despite this simple form of C̄, the optimization over
all pointer systems and operations thereon is a daunt-
ing task. Indeed, even for a fixed pointer at initial
temperature T = 1/β, identifying the optimal mea-
surement procedure in terms of the best ratio of (av-
erage) correlation increase per unit energy cost (av-
eraged over the input system states) is highly non-
trivial. To illustrate the difficulty, first note that an
(attainable) bound exists for correlating (quantified
by the mutual information) two arbitrary systems
that are initially thermal at the same temperature
at optimal energy expenditure [36, 37]. While the
known protocol for attaining this bound is in general
not unitary (it involves lowering the temperature), in
some cases the bound is tight already when one corre-
lates the systems unitarily. However, it was recently
shown [38, 39] that the optimal (in the sense of the
mentioned bound being tight) trade-off between cor-
relations and energy cost cannot always be achieved
unitarily.

Of course, in our case, the initial state of the sys-
tem is not known, and cannot be expected to be ther-
mal in general. Moreover, the mutual information is
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not a suitable figure of merit for quantifying the de-
sired correlations between system and pointer because
the latter don’t distinguish between classical and gen-
uinely quantum correlations. For instance, for a
single-qubit system and pointer, the states |Φ+ 〉

SP
=(

|00 〉 + |11 〉
)
/
√

2 and ρSP = 1
2
(
|00 〉〈00 | + |11 〉〈11 |

)

have different values of mutual information but are
equally well (i.e., perfectly) correlated w.r.t. to the
desired measurement basis. The above arguments on
optimally correlating protocols hence do not apply di-
rectly, but with the added complication of the un-
known system state and the unbiasedness condition,
we cannot rule out the possibility that the optimal
unbiased measurement procedures are not realized by
a unitary correlating step.

Nonetheless, it can be argued that any nonunitary
realization of the second part EII of the CPTP map
E must require higher levels of control than a corre-
sponding unitary realization due to the requirement of
realizing nonunitary maps EII as unitaries on a larger
Hilbert space. Specifically, any CPTP map EII can
be thought of as a unitary on a larger Hilbert space
HSP⊗HE (with a factoring initial condition) [40], that
is, one may write any EII as

EII[ρSP ] = trE
[
USPE

[
ρSP ⊗ |χ 〉〈χ |

]
U†SPE

]
(A.30)

for some unitary USPE on HSP ⊗ HE and for some
pure state |χ 〉 ∈ HE. At the same time, employing a
unitary to correlate pointer and system enables us to
unambiguously quantify the work cost of the correlat-
ing step without assumptions about the Hamiltonian
of potential auxiliary systems.

We are therefore particularly interested in describ-
ing all unbiased measurement procedures, where EII is
realized unitarily, such that

ρ̃SP = EII[ρSP ] = UρSPU
† (A.31)

with UU† = U†U = 1SP . In this sense, our focus lies
on unbiased measurement procedures where all con-
trol that one may have over external systems (beyond
S and P ) is used in the initial step represented by EI

to prepare the pointer in a suitable state, e.g., by low-
ering its temperature. Here we make use of the fact
that the work cost of refrigeration with various lev-
els of control has been extensively studied [16]. This
leaves us with the task of analyzing the structure of
the representations U of the unitary maps EII.

A first step towards the completion of this task is to
note that the unbiasedness condition for measurement
procedures with a unitary correlating step EII means
that it is inefficient (in terms of energy cost) to use a
pointer Hilbert space HP whose dimension is not an
integer multiple of the system dimension. This can be
explained in the following way. By inspection of the
maps in Eq. (A.27), one notes that E (i)

II maps the dP ×
dP density matrix ρP to a dS rank(Πi) × dS rank(Πi)
density matrix. That is, the size of each of the dS
blocks Ãji ∀ j is determined by the rank of Πi. If

the map EII is unitary, this implies that all E (i)
II are

unitary, and hence

dP = dS rank(Πi) ∀ i. (A.32)

Conversely, this implies that all projectors Πi have
the same rank dP/dS, which must be an integer larger
or equal to 1, dP = λdS for λ ∈ N. The implication of
this for the correlation matrix in (A.26) is that it is
now square

ΓUunb
=




ρ00Ã00 ρ11Ã01 ρ22Ã02 · · ·
ρ00Ã10 ρ11Ã11 ρ22Ã12 · · ·
ρ00Ã20 ρ11Ã21 ρ22Ã22 . . .

...
...

...
. . .



. (A.33)

In principle, one could initially consider a pointer with
a Hilbert space dimension larger than required for the
desired λ. However, the energy levels exceeding λdS
would have to be truncated before the preparation
step to avoid unnecessary additional energy costs.
The general form of the unitaries realising such un-
biased measurement procedures is summarised below.

Lemma 2

LetMU (β) be an unbiased finite-resource (∆E <
∞, T = 1/β > 0) measurement procedure with
unitary correlating step EII using a pointer system
Hilbert space HP and Hamiltonian HP with dP =
λdS for λ ∈ N. The unitary map U realizing the
correlating step, i.e.,

EII[ρS ⊗ ρP ] = UρS ⊗ ρPU†, (A.34)

can be split into two consecutive unitary opera-
tions, U = V Ũ , where Ũ and V are of the form

Ũ =
dS−1∑

i=0
| i 〉〈 i |

S
⊗ Ũ (i), (A.35)

V =
dS−1∑

i,j=0

λ∑

m=1
|j 〉〈 i |

S
⊗ | ψ̃(i)

m 〉〈 ψ̃(j)
m |P , (A.36)

and Ũ (i) are arbitrary unitaries on HP .

Proof of Lemma 2. The structure of the unitaries
in the correlating step can be understood by noting
that unitaries have only a single non-trivial Kraus op-
erator. The operators Ũ (i) in the first unitary Ũ then
simply correspond to the single Kraus operators of
the maps E (i)

II from Eq. (A.27), rearranging the joint
density matrix only in the subspaces of fixed | i 〉

S
, cre-

ating the distinction between the sub-blocks Ãji for
different j. The second part, realized by the unitary
V then just swaps these sub-blocks, such that all Ã0i
are left in the subspace corresponding to |0 〉

S
and Πi,

all Ã1i are left in the subspace corresponding to |1 〉
S
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and Πi, and so forth. The only freedom in choosing
unitary correlation steps for unbiased measurements
hence lies in the choice of the Ũ (i).

A.VI Unbiased and Non-invasive Measure-
ments are Faithful
With the compact result of Lemmas 1 and 2 at hand,
let us now briefly return to the relationship between
the properties unbiasedness and non-invasiveness. As
we have now seen, measurement procedures that are
unbiased for all initial system states ρS are required to
map the subspace of the joint system-pointer Hilbert
space corresponding to the image of the operator
| i 〉〈 i |

S
⊗1P to the subspace corresponding to the im-

age of 1S ⊗ Πi for all i. At this point it becomes
clear that, formulating the analogous statements to
Lemmas 1 and 2 for measurement procedures that are
non-invasive instead of unbiased for all ρS, results in
maps from the subspace corresponding to the image
of the operator | i 〉〈 i |

S
⊗ 1P to itself. Since the image

of | i 〉〈 i |
S
⊗1P is spanned by the set of non-trivial joint

eigenvectors of the set of projectors {| i 〉〈 i |
S
⊗ Πj}j ,

and the image of 1S ⊗ Πi is spanned by the set of
non-trivial joint eigenvectors of the set of projectors
{|j 〉〈j |

S
⊗Πi}j , a map that is supposed to satisfy both

unbiasedness and non-invasiveness for all ρS must be
a map from the image of | i 〉〈 i |

S
⊗ 1P to the span of

the set of non-trivial eigenvectors of | i 〉〈 i |
S
⊗Πi, such

that tr(| i 〉〈 i |
S
⊗Πiρ̃SP ) = ρii ∀i. By construction, one

thus has
∑
i tr(| i 〉〈 i |

S
⊗Πiρ̃SP ) =

∑
i ρii = 1, and the

measurement is faithful.

A.VII Maximally Correlating Unbiased Mea-
surements
To gain further insight into the fundamental limita-
tions of non-ideal measurements, we now wish to fo-
cus on a special case where Lemma 2 applies, that
is, an unbiased measurement procedure with unitary
correlating step, such that — at least for the pur-
pose of controlling their interaction — the joint sys-
tem of pointer and measured system can be consid-
ered closed. That is, procedures where EII[ρS ⊗ ρP ] =
UρS ⊗ ρPU†. Apart from this restriction, we will only
consider preparation steps that modify the tempera-
ture of the initial pointer system, i.e. EI is a refrig-
eration step. In such a scenario, T = 1/β might be
the initial temperature of the pointer, or, e.g., one
below the ambient temperature, reached by investing
energy for cooling the pointer. For such measurement
procedures, we now wish to find the maximum at-
tainable correlation between the system and pointer.
As we show, there is an algebraic maximum Cmax for
the correlations that can be unitarily created between
the system and the thermal pointer, regardless of the
initial system state ρS. Recall the definition of the
correlation function in Eq. (A.19), which we rewrite

as

C(ρ̃SP ) :=
∑

i

tr
[
Π̃iiρ̃SP

]
, (A.37)

by making the association Π̃ij = | i 〉〈 i | ⊗ Πj ∀ i, j.
By definition, the correlation function is only sensi-
tive to terms appearing along the diagonal w.r.t. any
chosen common eigenbasis (with nontrivial eigenval-
ues) of the set of operators Π̃ii. We refer to the
subspace of HS ⊗ HP spanned by these eigenvectors
as Hcorr, and to its complement as Hnc, such that
HS ⊗ HP = Hcorr ⊕ Hnc. In particular, this im-
plies that the unitary transformation achieving the
algebraic maximum (over all unitaries Uunb realiz-
ing unbiased measurement procedures in the sense of
Lemma 2)

max
Uunb

C(ρ̃SP ) = Cmax (A.38)

is not unique since C(ρ̃SP ) is invariant under opera-
tions of the form Ucorr ⊕ Unc, where Ucorr and Unc
act nontrivially only on the subspaces Hcorr and Hnc,
respectively.

Within the orbit of all unitaries that one may per-
form (including those corresponding to biased mea-
surements) on ρS ⊗ τP , the global maximum value
of the function C(ρ̃SP ) is achieved when the state
ρ̃SP is block-diagonal w.r.t. to the subspace partition
into Hcorr ⊕ Hnc, and the eigenvalues of the joint fi-
nal state restricted to the dP -dimensional correlated
subspace Hcorr, given by ρ̃corr = Πcorrρ̃SPΠcorr with
Πcorr =

∑
i | i 〉〈 i | ⊗Πi, are the dP largest eigenvalues

of ρ̃SP . These eigenvalues depend on ρS. However, we
have to take into account unbiasedness and the fact
that we are looking for a unitary. In particular, from
Eq. (A.32) we know that the Πi must all have the
same rank, namely rank(Πi) = dP/dS = 2N−1 ∀ i. It
then becomes apparent that one is restricted to se-
lecting the dP/dS largest eigenvalues of ρP = τP (β)
for each of the dS subspaces corresponding to the im-
age of a projector | i 〉〈 i | ⊗ Πi. Since the assignment
of eigenvalues to each subspace labelled by i is the
same, and the corresponding matrix elements of the
initial system state sum to 1, the maximal achievable
correlation is independent of ρS. In the notation of
Eq. (A.1), this corresponds to all probability popula-
tions that belong to the sector where (k = 0), i.e.,

Cmax(β) =
dS−1∑

i=0

dP /dS−1∑

j=0
ρii p

(0)
j = 1

Z

dP /dS−1∑

i=0
e−βE

(0)
i .

(A.39)
As mentioned in Eq. (A.29), this function is indepen-
dent of the system. The remaining probability weights
(i.e., the p(k)

j for k 6= 0 and j = 0, . . . , dP/dS − 1) are
distributed in the non-correlated subspace.

The corresponding general form of the joint final
state ρ̃SP of any unitarily maximally correlating un-
biased measurement procedure (starting from an ini-
tially thermal pointer state) can then be compactly
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specified in terms of its correlation matrix ΓUCmax as
defined in Eq. (A.26). To write ΓUCmax in a simple
form, let a(0)

i for i = 0, 1, . . . , dS be dP/dS × dP/dS
Hermitian matrices whose eigenvalues are the dP/dS
largest eigenvalues of the initial pointer state ρP =
τP (β), i.e.,

a(0)
i = M (0)

i

(
diag(p(0)

0 , p(0)
1 , . . . , p(0)

dP /dS−1
)
M (0)
i

†
,

(A.40)

where the M (0)
i are dP/dS × dP/dS unitary matrices.

The correlation matrix ΓUCmax is then of the form

ΓUCmax =




ρ00a
(0)
0 ρ11Ã01 ρ22Ã02 · · ·

ρ00Ã10 ρ11a
(0)
1 ρ22Ã12 · · ·

ρ00Ã20 ρ11Ã21 ρ22a
(0)
2 . . .

...
...

...
. . .



,

(A.41)
where the block matrices on the diagonal (blue) are
the corresponding entries of ρ̃SP restricted to the
correlated subspace Hcorr, whereas the block matri-
ces on the off-diagonal of ΓUCmax (here shown in
green) correspond to the diagonal blocks of ρ̃SP re-
stricted to the non-correlated subspace Hnc. Addi-
tional off-diagonal entries may appear in the projec-
tion of ρ̃SP onto Hnc between blocks Ãij and Ãi′j
with the same column index j but different row in-
dices i 6= i′ with i, i′ 6= j, while maintaining an un-
biased measurement with maximal correlation. The
additional constraint of Eq. (A.25) ensuring an unbi-
ased measurement procedure can here be written as
tr[a(0)

j ] +
∑
i ,i 6=j tr[Ãij ] = 1, ∀ j. The remaining free-

dom of applying unitaries that leave the subspaces
Hcorr and Hnc invariant and are compatible with un-
biasedness can be used for minimization of the corre-
sponding energy cost. Before we discuss this proce-
dure for arbitrary system and pointer dimensions, it
will be instructive to consider the special case where
the system is a single qubit and the pointer consists
of N identical two-level systems.

A.VIII Optimally Correlating Unitary for a
Single-Qubit System and N -Qubit Pointer
In the previous appendix, we have identified the struc-
ture of all unitarily correlating unbiased measure-
ments that create maximal correlations Cmax (a sub-
class of the maps EII). We are now interested in fur-
ther restricting this set of measurements to identify
those unitaries that achieve Cmax for the least energy.
That is, we wish to determine the optimal Uopt which
solves the optimisation problem

min
Ucorr

∆EII s.t. C(ρ̃
SP

) = Cmax . (A.42)

For arbitrary system dimensions and Hamiltonians,
the explicit form of the solutions Uopt is rather in-
volved and the proofs of optimality become very tech-
nical in nature. Before we move on to such general

cases in Appendix A.IX, let us therefore here illus-
trate the general method by focusing on an example
of interest.

Here, we consider a two-dimensional system, i.e., a
qubit with Hilbert spaceHS = C2, dimensions dS = 2,
and a Hamiltonian HS with eigenstates |0 〉

S
and |1 〉

S

and spectral decomposition HS = ES |1 〉〈1 |S. In ad-
dition, we assume that the system state is initially
unknown such that the corresponding density oper-
ator is maximally mixed, ρS = 1

212. Meanwhile, we
consider a measurement apparatus modelled as an N -
qubit pointer, dP = 2N , where each qubit has the
same local Hamiltonian with vanishing ground state
energy and energy gap matching the system energy
gap, EP = ES. The total pointer Hamiltonian is

thus HP =
∑1
k=0

∑2N−1−1
i=0 E(k)

i |E(k)
i 〉〈E(k)

i |, where
we have adopted the sector notation introduced in
Eq. (A.1). Note that the pointer spectrum is highly
degenerate since there are 2N eigenvalues but only
N+1 different energy levels, E(k)

i /ES ∈ {0, 1, . . . , N}.
With respect to the energy eigenbasis the initial
pointer state before the correlating step is

τP (β)⊗N =
1∑

k=0

2N−1−1∑

i=0
p(k)
i |E(k)

i 〉〈E(k)
i | , (A.43)

with p(k)
i = e−βE

(k)
i /Z and Z = tr(e−βHP ) =∑

i,k e
−βE(k)

i . For this setting, we will now solve
the optimization problem of Eq. (A.42) for ρ̃SP =
Ucorr (ρS ⊗ τP (β)⊗N )U†corr.

From (A.39), the maximum algebraic correlation
achievable between an N−qubit pointer and a qubit
system is

Cmax(β) = 1
Z

2N−1−1∑

i=0
e−βE

(0)
i , (A.44)

and the post-interaction correlation matrix associated
with this scenario is given by

ΓUCmax
=
[
ρ00a

(0)
0 ρ11Ã01

ρ00Ã10 ρ11a
(0)
1

]
. (A.45)

Here, a(0)
0 and a(0)

1 are 2N−1 × 2N−1 dimensional
Hermitian matrices whose eigenvalues are the 2N−1

largest eigenvalues of τ⊗NP , that is, there are a uni-
tary matrices M (0)

0 and M (0)
1 such that

a(0)
i = M (0)

i

(
diag(p(0)

0 , · · · , p(0)
2N−1−1)

)
M (0)
i

†
for i = 0, 1.

(A.46)

In our example, we further have ρ00 = ρ11 = 1
2 but

we leave the symbols ρ00 and ρ11 for clarity where
necessary. For the interaction to be unbiased accord-
ing to Eq. (A.41), there is now no choice but to set
Ã01 = a(1)

1 and Ã10 = a(1)
0 , where

a(1)
i = M (1)

i

(
diag(p(1)

0 , p(1)
1 , . . . , p(1)

2N−1−1
)
M (1)
i

†
,

(A.47)
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and M (1)
i for i = 0, 1 are unitaries not yet fixed by

the requirements of unbiasedness or maximal correla-
tion. The eigenvalues {p(1)

0 , p(1)
1 , . . . , p(1)

2N−1−1} of a(1)
0

and a(1)
1 correspond to the second (smaller) half of

the eigenvalues of τ⊗NP , and hence we have tr(a(0)
i ) +

tr(a(1)
i ) = 1 ∀ i. The correlation matrix becomes

ΓUCmax
=
[
ρ00a

(0)
0 ρ11a

(1)
1

ρ00a
(1)
0 ρ11a

(0)
1

]
. (A.48)

In the present case where dS = 2 and a maximally cor-
related, unbiased measurement, the correlation ma-
trix ΓUCmax

indeed catches all nonzero elements of ρ̃SP ,
which is block diagonal,

ρ̃SP = diag(ρ00a
(0)
0 , ρ11a

(1)
1 , ρ00a

(1)
0 , ρ11a

(0)
1 ). (A.49)

In general, for dS > 2, additional nonzero off-diagonal
elements may appear in ρ̃SP that are not explicitly
captured by ΓUCmax

.
The cost of correlating, and the function we wish

to minimise, is given by the energy difference of the
initial and final states,

∆EII = E(ρ̃SP )− E(ρSP ). (A.50)

Since the initial energy is fixed by the initial temper-
ature (and any preparation one wishes to include), we
focus on minimising E(ρ̃SP ). In order to facilitate the
computation, it will be useful to decompose E(ρ̃SP ) in
terms of the correlated and non-correlated subspaces

E(ρ̃SP ) = Ecorr(ρ̃SP ) + Enc(ρ̃SP ) (A.51)

= tr[
∑

i

Π̃iiHSP ρ̃SP ] + tr[
∑

i,j
i 6=j

Π̃ijHSP ρ̃SP ],

where, again we have Π̃ij = | i 〉〈 i | ⊗Πj and the com-
bined system-pointer Hamiltonian is HSP = HS⊗1P +
1S ⊗HP . For our qubit example, measured by an N -
qubit pointer, this becomes

E(ρ̃SP ) = tr[(Π̃00 + Π̃11)HSP ρ̃SP ] (A.52)

+ tr[(Π̃01 + Π̃10)HSP ρ̃SP ].

The class of unitaries that achieve Cmax rearranges
the elements of ρSP to place the ‘heaviest’ popula-
tions of probabilities (eigenvalues of τP ) into the cor-
related subspaces of ρ̃SP . From this constraint we al-
ready know which elements (eigenvalues) of the post-
interaction state ρ̃SP are assigned to which subspaces.
In order to minimise the energy, one must therefore
find the optimal assignment of the energy eigenbasis
to these subspaces, which amounts to determining the
Πi.

We now proceed as follows: First, we will minimise
the energy in the correlated subspaces, after which
we will minimise the energy in the non-correlated
subspaces, a strategy that presents a global energy

minimum for the entire state.

Noting that Π̃ij ⊥ Π̃i′j′ whenever i 6= i′ or j 6= j′

we observe that also (Π̃00 + Π̃11) is a projector. We
can hence rewrite the first term on right-hand side of
Eq. (A.52) as

tr
[∑

i=0,1
Π̃iiHSP ρ̃SP

]
= tr

[(∑

i=0,1
Π̃ii

)2
HSP ρ̃SP

]

= tr
[(∑

i=0,1
Π̃ii

)
HSP ρ̃SP

( ∑

j=0,1
Π̃jj

)]

=
∑

i=0,1
tr
[
Π̃iiHSP ρ̃SP Π̃ii

]
, (A.53)

where we have used the orthogonality of the projec-
tors again in the last step. Once the trace has been
restricted to the subspace corresponding to the space
spanned by the nontrivial eigenvectors of Π̃ii, we can
further rewrite Eq. (A.53) as

∑

i=0,1
tr
[
Π̃iiHSP ρ̃SP Π̃ii

]
(A.54)

=
∑

i=0,1
tr
[
Π̃ii (HS +HP ) ρ̃SP Π̃ii

]

= ρ11 ES tr
[
a(0)

1
]

+
∑

i=0,1
ρii tr

[
ΠiHPΠi a

(0)
i

]
.

Here, one should note that, strictly speaking, ΠiHPΠi

are dP ×dP matrices, while a(0)
i are dP/dS×dP/dS ma-

trices. However, the image of ΠiHPΠi is also of di-
mension dP/dS, and one may hence think of ΠiHPΠi

as nonzero dP/dS×dP/dS matrices padded by rows and
columns of zeros. In a slight abuse of notation we use
the same symbol for the entire operator and its non-
trivial block, since it is clear from the context, which
object is referred to. In particular, (ΠiHPΠi) a(0)

i

refers to the product of two dP/dS × dP/dS matrices.
To simplify the last line of Eq. (A.54), let us first
write a(0) := diag(p(0)

0 , · · · , p(0)
2N−1−1), where we may

assume w.l.o.g. that a(0) is diagonal w.r.t. the same
basis as ΠiHPΠi and the populations are ordered in
non-increasing order. Any mismatch can be absorbed
into the choice of the M (0)

i . Further note for the first
term that tr

[
a(0)

1
]

= tr
[
a(0)
]
, whereas the second term

can be expressed as

tr
[
ΠiHPΠi a

(0)
i

]
= tr

[
ΠiHPΠiM

(0)
i a(0)M (0)

i

†]

= tr
[
M (0)
i

†ΠiHPΠiM
(0)
i a(0)

]
.

(A.55)

The quantity that we wish to minimize in this first
step is thus of the form

Ecorr(ρ̃SP ) = tr
[ (
ρ00M

(0)
0
†Π0HPΠ0M

(0)
0 (A.56)

+ ρ11M
(0)
1
†Π1(HP + ES)Π1M

(0)
1
)
a(0)
]
.

The minimization is to be carried out over all choices
of projectors Πi, i.e., choosing the basis {| ψ̃(i)

n 〉}i,n in
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relation to the eigenbasis of HSP , as well as over all
choices of the M (0)

i , or, in general the M (j)
i . While the

minimisation over the Πi requires some more in-depth
analysis (that we perform below), a simple observa-
tion can made right away. For a given initial state,
the state in the unitary orbit of the initial state with
minimal energy w.r.t. to a given Hamiltonian must
be diagonal in the eigenbasis of this Hamiltonian, i.e.,
the corresponding passive state. Meanwhile, the con-
ditions of unbiasedness and maximal algebraic corre-
lations impose a certain block structure once a basis
has been fixed and allow for but do not require off-
diagonal elements. Therefore, it is clear that the unbi-
ased, minimal energy solution with maximal algebraic
correlations must be diagonal w.r.t. HSP , restricting
the unitaries connecting the bases {| ψ̃(i)

n 〉}i,n with the
eigenbasis of HSP as well as the unitaries M (j)

i to be
permutation matrices. Moreover, suppose that for the
fixed choice of M (0)

i = 1 ∀i one has found an optimal
choice of Πi. Then any nontrivial modification of any
of the M (0)

i can only increase the energy in the respec-
tive subspace. Without loss of generality we therefore
set M (0)

i = 1 ∀i.
With this, we can now rewrite the energy in the

correlated subspace as

Ecorr(ρ̃SP ) = tr
[ (
ρ00Π0HPΠ0 (A.57)

+ ρ11Π1(HP + ES)Π1
)
a(0)
]

= x · a0,

where a0 is the vector of diagonal entries of the matrix

a(0) and x ∈ R2N−1
is the vector of diagonal entries of

the matrix
(
ρ00Π0HPΠ0 +ρ11Π1(HP +ES)Π1

)
. Every

component xi of x is seen to be sum of two energies
from the Π0 and Π1 subspaces of HP , respectively
modulated by the respective system populations ρii.

We now switch to a slightly less cumbersome nota-
tion for the pointer. Let the set SN with elements si
for i ∈ {0, · · · , dP−1} be the set of energies (in units of
ES) in the energy spectrum of the pointer, ordered in
non-decreasing order, such that HP =

∑
i si |si 〉〈si |

and si ≤ sj ∀i < j. For example, a 3-qubit pointer
with gap EP = ES and vanishing ground state would
be associated with the set S3 = {0, 1, 1, 1, 2, 2, 2, 3}.
The elements of the vector x can now be written as

xi = ρ00sj + ρ11(sl + ES) j 6= l,

0 ≤ j, l ≤ (2N − 1),
sj,l ∈ SN ,

(A.58)
such that the indices j, l are used only once. Thus,
the xi are composed by selecting pairs of elements,
without replacement, from the set SN . There are
several statements we can make immediately about
the set SN . First, it has 2N elements which are dis-
tributed binomially such that the energy kEP appears(
N
k

)
times. Second, in the case that we are probing

an unknown state, ρS = 1
212, the sum of the elements

of x is constant. Namely

x0x1x2x3xi =
1
2 (sj + sl + ES) j 6= l

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

0
111

222
3

s7 s6 s5 s4     s3 s2      s1     s0

0
111

222
3

s7 s6 s5 s4     s3 s2      s1     s0

Figure A.1: The energies of a 3−qubit pointer S3 =
{s0, · · · , s7} with gap EP = 1 are arranged in non-increasing
order. The schematic show two ways of choosing xi from
the set S3. The right hand side selects nearest neighbour
pairs and thus represents the optimal pairing that minimises
Ecorr(ρ̃SP ) in (A.60).

2N−1−1∑

i=0
xi =

2N−1∑

i=0
(si + 1

4ES) = c . (A.59)

Since xi ≥ 0 ∀i, this means we can treat the set
{xi/c}i as a normalised probability distribution. Let
X denote the set of all possible vectors x, then, min-
imising the energy in the correlated subspace amounts
to

minEcorr(ρ̃SP ) = min
x∈X

(x · a0) = x∗ · a0. (A.60)

The set X can be understood as the set of all possible
ways of choosing pairs from SN without replacement.
The size (i.e., the cardinality) of X, denoted |X|,
grows factorially with N , so searching by brute-force
for the optimal vector is not feasible. The solution x∗
for the minimization problem in Eq. (A.60) is given
by the vector that pairs the smallest weights p(0)

i with

the largest values xi. Specifically, let v,w ∈ R2N−1

be two normalised vectors with their components or-
dered in non-increasing order such that v0 ≥ v1 · · ·
and w0 ≥ w1 · · · . We say that v majorises w, writ-
ten v � w, when

∑k
i vi ≥

∑k
i wi ∀ k. In other words

the cumulative sum of the components of the vector v
grows faster than for w. The vector x∗ that presents
the solution to the optimization problem is hence the
vector that majorises all other vectors x ∈ X, i.e.,

x∗ � x ∀x ∈ X. (A.61)

This vector is constructed by maximising each x∗i term
by term from the bottom up, populating the compo-
nents of x∗ such that x2N−1−1 ≥ · · · ≥ x0. This con-
struction amounts to picking nearest neighbour pairs
from the set SN , starting with the largest pair, as il-
lustrated in Fig. A.1. Thus, the components of the
optimal solution take the form

x∗i = ρ00s2i + ρ11(s2i+1 + ES) si ∈ SN . (A.62)

By construction, the majorisation of Eq. (A.61) is sat-
isfied, and we have found the minimum energy solu-
tion in the correlated subspace.
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By constructing x∗ from nearest neighbour pairs in
SN , we have fixed the energy eigenbasis in the pointer
Hilbert space. The projectors on the pointer are then

Π0 =
2N−1−1∑

i=0
|s2i 〉〈s2i | , Π1 =

2N−1−1∑

i=0
|s2i+1 〉〈s2i+1 | .

(A.63)

We now proceed to minimise the energy in the non-
correlated subspaces. Following a similar calculation
and series of arguments as leading to Eq. (A.57), we
write the energy as

Enc(ρ̃SP ) = tr
[
ρ11Π1HPΠ1 M

(1)
1 a(1)M (1)

1
†

+ ρ00Π0(HP + ES)Π0M
(1)
0 a(1)M (1)

0
†]

= y1 · a1
1 + y0 · a1

0

= y1 ·M (1)
1 a1 + y0 ·M (1)

0 a1, (A.64)

where a1
1 and a1

0 are vectors whose components are
the eigenvalues of the matrix a(1) in, as of yet, unde-
termined permutations (fixed by M (1)

1 and M (1)
0 ). The

vector a1, in turn, collects exactly these eigenvalues
in non-increasing order. However, since the energy
basis for the pointer has been fixed by Eq. (A.63), the
vectors y1 and y0 are completely determined. Their
components are given by

(y1)i = ρ11s2i+1, (y0)i = ρ00(s2i + ES) . (A.65)

To minimise the energy in the non-correlated sub-
space, we are thus looking for the solution to the op-
timisation problem

minEnc(ρ̃SP ) = min
M

(1)
0 ,M

(1)
1

(y0 ·M (1)
0 a1 + y1 ·M (1)

1 a1) ,

(A.66)

i.e., to find the optimal permutation matrices M (1)
0

and M (1)
1 . Because of the freedom to choose these two

permutations independently, the optimizations in the
two subspaces decouple and it can be easily seen that
the optimal solution for both is to pair up the smallest
energies with the largest weights. In other words, to
select M (1)

0 = M (1)
1 = 1. For ρ00 = ρ11, this in turn

implies

minEnc(ρ̃SP ) = (y0 + y1) · a1 = x∗a1 . (A.67)

where we have noted that for the special case6 of dS =
2 one may collect y0 and y1 into y0 + y1 = x∗.
M∗a1 must be ordered in non-increasing order to

achieve the global minimum, which in turn implies
that M∗ = 1.

Collecting the results for the correlated and non-
correlated subspaces and substituting for the forms of

6This equality holds in the special case that dS = 2, for the
more general case see Appendix A.IX.

a0 and a1, the total energy after the interaction is

minE(ρ̃SP ) = min(Ecorr(ρ̃SP ) + Enc(ρ̃SP ))

= x∗ · (a0 + a1) (A.68)

= 1
2

2N−1−1∑

i=0

(
s2i + s2i+1 + ES

)
(p(0)
i + p(1)

i ).

Since the initial state is diagonal w.r.t. the energy
eigenbasis, the initial energy can also be easily com-
puted to be

E(ρSP ) = 1
2

2N−1−1∑

i=0

[
(2si + ES)p(0)

i (A.69)

+ (2s(2N−1+i) + ES)p(1)
i

]
.

Thus from the above and Eq. (A.69) we have

∆EII = E(ρ̃SP )− E(ρSP ) (A.70)

= 1
2

2N−1−1∑

i=0
(s2i + s2i+1 − 2si)p(0)

i

+ (s2i + s2i+1 − 2s(2N−1+i))p(1)
i ,

where we note that, ES (the gap of the system) no
longer plays any role. Finally, observe that the cost
of correlating is always finite. If one substitutes for
the p(j)

i from Eq. (A.43) and takes the limit in which
the pointer is in a pure state, i.e., β → ∞, then the
maximal correlation indeed is perfect correlation, C =
1, and the corresponding cost of correlating is given
by

lim
β→∞

∆EII = ∆E (C=1)
II = 1

2EP . (A.71)

Notably, this expression is independent of N and
hence true also when N = 1. Therefore, regardless
of how many qubits the pointer consists of, if these
qubits are initially in the ground state, the cost of
correlating the system and pointer is precisely the
cost of exciting only a single qubit (modulated by
ρ00 = ρ11 = 1

2 ).
These results can equivalently be expressed in terms

of the sector notation introduced in Appendix A.I. In
this case, the projectors in Eq. (A.63) become

Π0 =
1∑

k=0

2N−2−1∑

i=0
|E(k)

2i 〉〈E(k)
2i | , (A.72a)

Π1 =
1∑

k=0

2N−2−1∑

i=0
|E(k)

2i+1 〉〈E(k)
2i+1 | . (A.72b)

Similarly, the energy after optimally correlating in
Eq. (A.68) is

E(ρ̃SP ) = 1
2

1∑

j=0

2N−2−1∑

i=0

(
E(j)

2i + E(j)
2i+1 + ES

)
(A.73)

× (p(0)
i+j2N−2 + p(1)

i+j2N−2),
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and the cost of correlating is

∆EII = 1
2

1∑

j=0

2N−2−1∑

i=0

[(
E(j)

2i +E(j)
2i+1−2E(0)

i+j2N−2

)
p

(0)

i+j2N−2

+
(
E(j)

2i + E(j)
2i+1 − 2E(1)

i+j2N−2

)
p(1)
i+j2N−2

]
.

(A.74)

A.IX Construction of the optimal unitary for
arbitrary systems
In the previous appendix we provided the con-
struction for correlating a qubit system with an
N−qubit pointer to Cmax. We also proved that
this construction was an energy minimum. This
construction generalises to any unknown quantum
systems ρS = 1

dS
1dS and thermal pointers τP (β),

with arbitrary Hamiltonians HS and HP . Below we
provide the recipe for constructing such a unitary.

Consider the thermal pointer τP (β) and order the
spectrum of the pointer Hamiltonian in terms of
its excitations into dS sectors of size dP/dS, i.e.,

HP =
∑dS−1
k=0

∑dP /dS−1
i=0 E(k)

i |E(k)
i 〉〈E(k)

i | with E(k)
i ≤

E(k′)
j ∀i, j for k′ > k. Diagonalise the pointer and the

system in their ordered energy eigenbases,

τP (β) =
dS−1∑

k=0

dP /dS−1∑

i=0
p(k)
i |E(k)

i 〉〈E(k)
i | ,

ρS =
∑

i

ρii | i 〉〈 i | ,
(A.75)

where p(k)
i = 1/Ze−βE(k)

i .

Assign the largest dP/dS eigenvalues of the pointer
state τP (β) (captured in the matrix a(0)) to the cor-
related subspace. The form of the correlation ma-
trix is given in Eq. (A.41). To minimise the en-
ergy contribution from the correlated subspace, given
by Ecorr(ρ̃SP ) = tr[

∑
i Π̃iiHSP ρ̃SP ], choose the pointer

Hilbert space projectors to be

Πi =
dS−1∑

k=0

(dP /d2
S)−1∑

i=0
|E(k)

dS ·j+i 〉〈E
(k)
dS ·j+i | (A.76)

∀ j ∈ {0, · · · , dS − 1} .

This choice fixes the basis vectors for the pointer and
thus it remains to distribute the remaining probabil-
ity weights (the remaining eigenvalues of τP ) in the
non-correlated subspace. This is achieved by pairing
the largest weights with the smallest energies. The
remaining weights are

a(i) =
(
diag(p(0)

0 , · · · , p(0)
2N−1−1)

)
i ∈ {1, · · · , dS − 1},

(A.77)

and the resulting correlation matrix, arising from the
optimal unitary Uopt has the form

ΓUopt =




ρ00a(0) ρ11a(1) · · · ρdS−1 dS−1a(1)

ρ00a(1) ρ11a(0) · · · ρdS−1 dS−1a(2)

...
...

. . .
...

ρ00a(dS − 1) ρ11a(dS − 1) · · · ρdS−1 dS−1a(0)



.

(A.78)

In turn, this fixes the the matrices Ãij in Eq. (A.41)
to be

Ãij = a(π[i,j]) (A.79)

where π[m, k] denotes the m, k−th element of the
dS×dS matrix composed of permutations of the entries
of the set {0, 1, . . . , dS − 1} under the constraint that
the diagonal entries π[m,m] = 0 ,∀m. For the op-
timal energy solution, this permutation matrix takes
the form

π =




0 1 1 1 . . .

1 0 2 2 . . .

2 2 0 3 . . .

3 3 3 0 . . .
...

...
...

...
. . .



, (A.80)

which encodes how the correlations in the matrices
a(i) are paired with the non-correlated subspaces. The
final state admits a simplified form, namely

ρ̃SP =
dS−1∑

k=0

ρkk
Z
(dP /dS−1∑

i=0
e−βE

(0)
i |k 〉〈k | ⊗ |E(i)

k 〉〈E(i)
k |

(A.81)

+
dS−1∑

m6=k

dP /dS−1∑

i=0
e−βE

(π[m, k])
i |m 〉〈m | ⊗ |E(i)

k 〉〈E(i)
k |
)
.

It can be seen that this state is not unique due to the
inherent description in terms of energy. Thus the final
state ρ̃SP depends on one’s choice of how to represent
the basis and excitations and in general is degenerate.
We leave it as an open investigation as to whether,
within this class there is a preferred state with special
and interesting properties.
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From the perspective of quantum thermodynamics, realisable measurements cost work and result
in measurement devices that are not perfectly correlated with the measured systems. We investigate
the consequences for the estimation of work in non-equilibrium processes and for the fundamental
structure of the work fluctuations when one assumes that the measurements are non-ideal. We show
that obtaining work estimates and their statistical moments at finite work cost implies an imperfec-
tion of the estimates themselves: more accurate estimates incur higher costs. Our results provide a
qualitative relation between the cost of obtaining information about work and the trustworthiness
of this information. Moreover, we show that Jarzynski’s equality can be maintained exactly at the
expense of a correction that depends only on the system’s energy scale, while the more general
fluctuation relation due to Crooks no longer holds when the cost of the work estimation procedure
is finite. We show that precise links between dissipation and irreversibility can be extended to the
non-ideal situation.

I. INTRODUCTION

Energy is a resource and, as with any resource, it is of
interest to understand how much of it is spent or can be
obtained during a given process, or simply, how much of
it is stored, for instance, in a battery. A quite different,
but familiar, resource that one handles on a daily basis
is money. Money does not usually come for free: it is ex-
changed for goods and services, and as a consequence it is
in one’s interest to know how much things cost and how
much money is at hand, e.g., stored in a wallet or bank
account. But while checking the exact amount of money
(or lack thereof) in one’s wallet is free, it is not unusual
to expect that banks charge certain fees for storing and
transferring money. Unfortunately, when it comes to en-
ergy, Nature is similarly unforthcoming. Fees apply to
the storage and transfer of energy and an energy cost is
incurred for obtaining estimates of the work transferred
within any thermodynamic process, or stored in a quan-
tum system. In this work, we show that obtaining these
estimates with a finite amount of work implies an imper-
fection in the estimates themselves: estimates which are
more accurate incur higher costs.

From a thermodynamic point of view, acknowledging
the energetic cost of measurements is crucial, e.g., for a
complete understanding of Maxwell’s demon or Szilard’s
engine [1, 2]. The work-cost of those measurements that
are ideal and projective has been investigated by means
of the work-value of measurement outcomes [3–5] or via
Landauer’s erasure bound for resetting the memory that
stores these outcomes [6–10]. However, a common obser-
vation among Refs. [11–13] is that the benefits derived
from using measurements as sources of free energy are
either matched or surpassed by the corresponding costs.

The crux of our argument is that energy delivered by
measurements is not free of charge and must be supplied
to realise the measurement in the first place. As we show,
this statement is bolstered by the first, second and, in
particular, third law of thermodynamics. It was recently
shown in [14] that ideal projective measurements require
one to prepare the measurement apparatus in a pure ini-
tial state. The third law stipulates that such zero-entropy
states can only be prepared asymptotically using infinite
time, infinite energy, or operations of infinite complexity
(see e.g., [15]). Consequently, ideal measurements do not
exist, in a strict sense, since they always incur diverging
costs. This implies that any realistic measurement using
finite resources is non-ideal. It is precisely these consid-
erations that become conceptually important when the
purpose of the measurement is to assess the energy con-
sumption itself.

Significant focus in quantum statistical mechanics has
been dedicated to the quantification of work and its fluc-
tuations in thermodynamic processes [16–19]. Studies
have also looked at the two-point measurement (TPM)
scheme (one of the most prominent approaches for es-
timating work in an out-of-equilibrium process) [20] in
the context of Jarzynski’s and Crooks’ fluctuation rela-
tions [21]. In this work we revisit these concepts and
investigate the consequences for these quantities when
one does not assume ideal measurements. We explicitly
show how the average work of the ideal TPM is modified
and discuss the operational meaning of the correspond-
ing estimates. We show that while Jarzynski’s equality
can be maintained exactly at the expense of a correction
that only depends on the system’s Hamiltonian, the more
general relation due to Crooks (as well as related results
linking irreversibility and dissipation [22, 23]) no longer
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hold in the presence of non-ideal measurements. Our re-
sults provide a qualitative connection between the cost
of obtaining information about work and the trustwor-
thiness of this information.

The paper is structured as follows. In Sec. II we set
the stage for our investigation: First, we review the
usual TPM scheme in Sec. II.1 before discussing the key
properties of ideal and non-ideal measurements following
Ref. [14] in Secs. II.2 and II.3, respectively. In Sec. III
we discuss a modified TPM scheme based on non-ideal
measurements and the resulting work estimates, before
investigating the implications for fluctuation relations of
Jarzynski and Crooks in Sec. IV. Finally, we discuss our
findings in Sec. V.

II. FRAMEWORK

II.1. Two-point measurement scheme

To formulate our ideas we adopt a commonplace view
in quantum thermodynamics, namely, that work is a cen-
tral resource that is required to move systems away from
freely available thermal equilibrium states [24] — an ap-
proach that has staged a diverse range of investigations
within the broader field [25–27]. In this paradigm, previ-
ous research has investigated the work-cost (or gain) of
quantum processes [28–32], refrigeration [33, 34], or for
establishing correlations [35–38].

In this so called ‘resource-theoretic’ approach, con-
sider a quantum system with Hamiltonian H(0) =∑iE(0)

i ∣E(0)
i ⟩⟨E(0)

i ∣ initially at thermal equilibrium with
its environment at temperature T , described by a Gibbs
state τ (0) = exp(−βH(0))/Z(0) with partition functionZ(0) = Tr(exp(−βH(0))) and β = (kBT )−1. Suppose the
system is driven out of equilibrium by a process Λ

(τ (0),H(0)) ΛÐÐÐ→ (ρ(f),H(f)) , (1)

resulting in a final Hamiltonian H(f) = ∑iE(f)
i ∣E(f)

i ⟩⟨E(f)
i ∣

and a final state ρ(f) = UΛτ
(0)U �

Λ, where UΛ is a uni-
tary determined by Λ. The work that is performed
on or extracted from the system during such a process
can be estimated via the two-point measurement (TPM)
scheme [20, 21] consisting of two ideal projective mea-
surements with respect to the eigenbases of H(0) and
H(f) before and after the protocol Λ is implemented,
respectively. After obtaining the outcomes labelled by
“n” and “m” in these measurements one concludes that
the system is left in the states ∣E(0)

n ⟩ and ∣E(f)
m ⟩, respec-

tively. To any transition between these pure states one
may associate a probability pn→m = ∣ ⟨E(f)

m ∣UΛ ∣E(0)
n ⟩ ∣2

together with a work value Wn→m = E(f)
m − E(0)

n , while
the probability for obtaining the first outcome is p(0)n =
exp(−βE(0)

n )/Z(0). The average work performed during

the protocol is thus

⟨W ⟩Λ = ∑
m,n

p(0)n pn→m (E(f)
m −E(0)

n ), (2)

which equals the change in average energy during the
protocol Λ, i.e.,

⟨W ⟩Λ = Tr(H(f)ρ(f)) −Tr(H(0)τ (0)) =∶ ∆EΛ. (3)

Estimates of ⟨W ⟩Λ could thus be obtained from perform-
ing ideal measurements and collecting the corresponding
outcome statistics. In the following, we will show how the
quantity ⟨W ⟩Λ in Eq. (2) and its estimate are modified
when replacing the two ideal measurements in the TPM
by more general non-ideal measurements (see Fig. 1).

II.2. Ideal measurements

The notion of perfect projective measurements that
leave the system in pure states with certainty is of course
idealized. To understand this idealization and its con-
sequences, we review the framework for non-ideal mea-
surements in Ref. [14]: Measurements are performed
by coupling the measured system to a suitably pre-
pared measurement apparatus (the “pointer”) via an en-
ergy investment. Assuming that the initial system and
pointer states are ρS and ρP , respectively, the measure-
ment can be described by a physical process that corre-
lates the system and pointer, resulting in a joint post-
measurement state ρ̃SP . For each of the states ∣n ⟩

S
(with

n = 0,1, . . . , dS−1) in the measurement basis {∣n ⟩
S
}n, one

assigns a corresponding outcome subspace of the pointer
Hilbert space via a projector Πn, such that ∑nΠn = 1P
and ΠmΠn = δmnΠn. We then define an ideal measure-
ment to have the following three properties:

(i) Unbiased: The (post-interaction) pointer repro-
duces the measurement statistics of the (pre-
interaction) system exactly, i.e.,

Tr(1S ⊗Πnρ̃SP) = Tr(∣n ⟩⟨n ∣
S
ρS) ∀n ∀ρS . (4)

(ii) Faithful: The post-interaction pointer and the
post-interaction system are perfectly correlated
w.r.t. the measurement basis (projectors), that is,

C(ρ̃SP ) ∶= ∑
n

Tr(∣n ⟩⟨n ∣
S
⊗Πn ρ̃SP) = 1 . (5)

In other words, given a measurement outcome n,
the probability that the system is left in the state∣n ⟩

S
is 1.

(iii) Non-invasive: The diagonal entries (w.r.t. the
measurement basis) of the pre-measurement system
state and the unconditional post-measurement sys-
tem state are the same, i.e.,

Tr(∣n ⟩⟨n ∣
S
ρS) = Tr(∣n ⟩⟨n ∣

S
ρ̃S) ∀n ∀ρS , (6)

where ρ̃S ∶= Tr
P
(ρ̃SP ).
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A measurement that does not satisfy all three prop-
erties is called non-ideal. In particular, it was shown
in Ref. [14] that ideal projective measurements are not
exactly realizable in practise because they require the
preparation of initially pure pointer states (at least in
some nontrivial subspace) to satisfy condition (ii). How-
ever, the third law of thermodynamics prevents one from
reaching the ground-state of any system with finite re-
sources [15, 33, 34, 39–42]. Since any other (pure) state
necessarily has higher energy than the ground state, the
third law thus excludes ideal measurements.

II.3. Non-ideal measurements

In order to understand non-ideal measurements bet-
ter, we consider how the laws of thermodynamics place
constraints on the ability to perform measurements in
quantum mechanics. To begin, we note that the first
law establishes a lower bound on the work-cost of mea-
surement when one explicitly considers the system and
measurement apparatus in the physical description (note
that work-costs in terms of lower bounds are sometimes
assumed, even if the costs are not always explicitly con-
sidered [43–45]). The second law implies that any reduc-
tion of the system’s entropy (e.g., by a projective mea-
surement that leaves the system in a pure state) must be
compensated by an entropy increase of at least the same
magnitude in the environment or the measurement ap-
paratus [11]. Finally, the third law provides the most
severe constraint on the cost of measurement. From
the above [14] an ideal measurement can only be imple-
mented using a pure state measurement apparatus. By
the third law, it is impossible to create pure states using
finite resources (e.g., with finite time, energy or complex-
ity), which implies that any physical measurement using
finite resources is non-ideal. Nevertheless, it was shown
that non-ideal measurements employing finite resources
can approximate ideal projective measurements arbitrar-
ily well.

To understand the sense in which a non-ideal measure-
ment can be considered ‘close’ to ideal, we recall prop-
erties (i)-(iii). All three properties are independent – for
a given measurement any one of them can be satisfied,
while the other two are not [14, Appendix A.3]. At the
same time, satisfying any two properties (for all ρS) also
implies the third. Since the third law of thermodynam-
ics prevents measurements from being exactly faithful
(i.e., satisfying (ii) exactly), this means that any non-
ideal measurement can only be unbiased or non-invasive,
but not both.

Consider a non-ideal measurement that is non-invasive.
From the above we know it can be neither faithful nor
unbiased. Then neither the individual measurement out-
comes nor the statistics generated from many measure-
ments allow reliable inferences about either the post- or

pre-measurement system state, respectively. Such a mea-
surement does not seem to reveal any information about
the measured system. Instead we consider non-ideal mea-
surements that are unbiased, and take this to be the rel-
evant requirement to speak meaningfully about a mea-
surement. For unbiased measurements one may then at-
tempt to maximise the correlation between pointer out-
comes and post-measurement system states to approach
an ideal measurement.

To formalise this, we consider an arbitrary system state
ρS in finite dimension dS, measured in the energy eigenba-
sis {∣Ei ⟩S}dS−1

i=0 . The system interacts with the measure-
ment apparatus, represented as a finite-size pointer with
Hamiltonian HP = ∑iE(P )

i ∣E(P )
i ⟩⟨E(P )

i ∣ and dimension dP .
In order to account transparently for all resources from
a thermodynamic point of view, we assume the pointer
is initially in a thermal1 state τP = exp(−βPHP )/ZP . The
interaction can be modelled by a suitable unitary2 evo-
lution Umeas leading to

ρ̃SP ∶= Umeas(ρS ⊗ τP )U �
meas. (7)

The interaction between system and pointer is unitary
but does not generally preserve energy, requiring an in-
vestment of energy

∆Emeas = Tr[(HS +HP )(ρ̃SP − ρS ⊗ τP )] (8)

in the form of work. For details see Appendix A.1. Fol-
lowing Ref. [14, Lemma 2], one may then construct Umeas

to realise an unbiased measurement with finite energy
cost, as we illustrate for a 3-dimensional system in Ap-
pendix A.1.a. The probability pn to obtain the mea-
surement outcome n in such a measurement is given by
pn = Tr(∣n ⟩⟨n ∣ρS). To ensure this is the case for all ρS,
the unitary Umeas must result in a final state ρ̃SP which
satisfies the equivalence relation

1S ⊗Πnρ̃SP1S ⊗Πn =̂ pnŨ (n)τP Ũ (n)�, (9)

i.e., 1S⊗Πnρ̃SP1S⊗Πn are dP ×dP matrices with the same
spectra as pnτP , i.e., they are equivalent up to applica-
tions of arbitrary unitaries Ũ (n) on the pointer Hilbert
space, as we discuss in detail in Appendix A.1.a. This
implies that ρn, the conditional post-measurement sys-
tem state for outcome n, is independent of the initial
system state ρS. Note that this is also the case for ideal
measurements (which are unbiased by definition), where

1 If the system is assumed to be initially thermal as well, such as
in the TPM scheme, there need not be a relation between the
inverse temperatures of the pointer and the system in principle.

2 In principle, one may effectively model such processes by com-
pletely positive and trace preserving (CPTP) maps, see [14, Ap-
pendix A.4], but for an exact account of the invested work it is
necessary to specify a corresponding dilation to a unitary acting
on a larger space of the pointer and its environment.
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the pure state after the measurement only depends on
the measurement outcome, but not on the initial system
state. In this regard, the difference with unbiased non-
ideal measurements is that the conditional state for the
latter are not pure. The most general form of any post-
measurement mixed state conditioned on the outcome n
is

ρn = ∑
l,l′
qll′∣n ∣El ⟩⟨El′ ∣ . (10)

Each state is normalised ∑l qll∣n = 1, ∀n and in general
the coefficients qll′∣n are independent of ρS. In the rest
of the paper we formulate our results as conditions and
constraints on qll′∣n.

One should also bear in mind that for non-ideal mea-
surements the pointer outcomes and post-measurement
system states are not perfectly correlated. This can be
quantified by the correlation function in Eq. (5),

C(ρ̃SP ) = dS−1∑
i=0

Tr(∣Ei ⟩⟨Ei ∣S ⊗Πi ρ̃SP), (11)

where Πi are the orthogonal pointer projectors associated
to different outcomes. The value of C(ρ̃SP ) represents
the average probability of correctly inferring the post-
measurement state upon observing the pointer. For ideal
measurements C(ρ̃SP ) = 1. However, for non-ideal mea-
surements there is an algebraic maximum, the maximal
correlation Cmax < 1, which can be unitarily achieved.
Cmax is given by the sum of the largest dP

dS
eigenvalues

of τP , see [14, Appendix A.7]. We call unbiased mea-
surements that achieve C(ρ̃SP ) = Cmax unbiased maxi-
mally correlating (UMC) measurements, discussed in de-
tail in Appendix A.1.b. In the same Appendix we also
show that UMC measurements lead to the following con-
straints on the coefficients of the post-measurement state:
qnn∣n = Cmax ,∀n and qnl∣n = qln∣n = 0 ,∀l ≠ n. As a
consequence, the trace distance between the conditional
post-measurement system state ρn and the pure state∣En ⟩ evaluates to D(ρn, ∣En ⟩⟨En ∣) = 1 −Cmax.

By further restricting to UMC measurements of min-
imal energy (Appendix A.1.c) we obtain qll′∣n = 0 ∀El ≠
El′ , because any off-diagonal elements with respect to
energy eigenstates with different energies would imply
extractable work, see, e.g., [46]. Minimal energy UMC
measurements thus imply a back-action on the mea-
sured system. Up to off-diagonal elements in degener-
ate subspaces, the unconditional post-measurement state
for minimal energy UMC measurements is given by ρ̃S =∑n pnρn = ∑n,l qll∣npn ∣El ⟩⟨El ∣. By (6) this would be
non-invasive when ρ

S
= ρ̃

S
implying qll∣n = δln ∀n.

At the same time, Cmax can be understood as an in-
dicator of the resource cost of a measurement: Qual-
itatively, increasing Cmax requires more work, control
over more complex pointers, more time to carry out op-
erations, or combinations thereof [14]. In particular,

τS

τP

τP

U0
n

ρ(0)
n UΛ

Uf

m

ρ(f)m∣n

Figure 1. Work estimation using two non-ideal measurements.
To estimate the work done on or extracted from a system
during a process Λ, two measurements are carried out before
and after the process occurs. The respective outcomes la-
belled “n” and “m” allow concluding that the system is left
in states ρ(0)

n
and ρ(f)m∣n. In the TPM scheme [20], these states

are (pure) eigenstates of the system Hamiltonian. For non-
ideal measurements modelled by unitaries U0 and Uf coupling
the system state to pointers originally in thermal states τS,
ρ(0)
n

and ρ(f)m∣n are mixed states.

for fixed pointer systems, increasing Cmax can only be
achieved by investing work in the preparation of the ini-
tial state of the pointer.

III. ESTIMATING WORK WITH NON-IDEAL
MEASUREMENTS

It is hardly surprising that the procedure of checking
how much work is spent or extracted during a proto-
col itself costs work. In other words, obtaining a work
estimate is accompanied by an additional, non-negative
work-cost. In Eq. (8) we saw that the specific (aver-
age) work ∆Emeas of UMC measurements depends on
the details of the Hamiltonians, the initial state ρS, the
temperature, and the association of the states ∣Ei ⟩S with
the projectors Πi. It has a finite positive minimum value
∆Emin

meas > 0 and as pointed out in Ref. [14] should not be
taken for granted, as it may significantly outweigh the
ideal expectation ⟨W ⟩Λ in Eq. (2). Particular attention
should be paid when it comes to machines using mea-
surements as a means of injecting free energy into the
system [43–45], as such costs need to be included in an
evaluation of the machine’s efficiency.

In this work, we do not wish to focus on the specific
cost of the measurement, but rather on the consequences
for the work estimate itself. The imperfection of mea-
surements is unavoidable and has immediate and inter-
esting consequences for work estimation. To investigate,
we modify the ordinary TPM scheme and replace the
ideal measurements by non-ideal (minimal energy UMC)
measurements3 (Fig. 1). This assumption can be inter-
preted as the desire to restrict to measurements that are
as close as possible to ideal ones while choosing the en-
ergetically cheapest way of doing so. A guiding intuition

3 In principle these two measurements can be different but we as-
sume that they are both minimal energy UMC.
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for the following analysis is that work estimation requires
two measurements. If the first is non-ideal but unbiased,
it necessarily disturbs the system. In particular, the inva-
siveness of the first measurement changes the statistics of
the second, leading to deviations in the work estimation
from the ideal case.

Because the measurements are assumed to be unbi-
ased, the probability p(0)n for obtaining the outcome n in
the first measurement is unchanged w.r.t. to the ideal
scenario. However, since the system is disturbed by the
measurement-induced back action, the conditional post-
measurement state ρ(0)n is no longer an eigenstate ∣E(0)

n ⟩
of H(0). In particular, the conditional probability that
the system is left in the eigenstate ∣E(0)

l ⟩ after observ-
ing the pointer outcome n in the first measurement is
q(0)
ll∣n ≠ δln. Given the outcome n, the process Λ, thus acts

on the state ρ(0)n = ∑l q(0)ll∣n∣E(0)
l ⟩⟨E(0)

l ∣ via a unitary UΛ.

Unbiasedness then implies that the conditional proba-
bility to obtain outcome m in the second measurement
given outcome n in the first measurement is

p(m∣n) = ⟨E(f)
m ∣UΛρ

(0)
n U

�
Λ ∣E(f)

m ⟩
= ∑

l

q(0)
ll∣n pl→m ≠ pn→m, (12)

where pn→m = ∣ ⟨E(f)
m ∣UΛ ∣E(0)

n ⟩ ∣2 as before (for details of
this scheme see Appendix A.2). For the work estimate⟨W ⟩non−id obtained within the non-ideal TPM scheme by
(erroneously) associating outcomes n and m with ener-
gies E(0)

n and E(f)
m one obtains

⟨W ⟩non−id = ∑
m,n

p(m∣n)p(0)n (E(f)
m −E(0)

n ) ≠ ⟨W ⟩Λ, (13)

which generally does not match the ideal value in Eq. (2).
In Appendix A.3.a we explicitly derive the corrected ex-
pression to be

⟨W ⟩non−id = Cmax⟨W ⟩Λ + ∑
m,n
l≠n

pl→m q(0)ll∣n p(0)n (E(f)
m −E(0)

n ).
(14)

Thus, we find that between the modified and ordi-
nary TPM schemes, the deviation of the estimated work⟨W ⟩non−id from the ideal value ⟨W ⟩Λ4 is characterised
by two values: a modifying prefactor Cmax < 1, along
with an additional term which may be either positive or
negative. Despite the generally complicated dependence
on the details of the initial state, the measurement, en-
ergy spectrum and on the process Λ, we show, in Ap-
pendix A.3.b, that this deviation can be bounded,

∣⟨W ⟩non−id − ⟨W ⟩Λ∣ ≤ (1 −Cmax) ∥H(f)∥∞ , (15)

4 obtained in the scenario with minimal energy UMC measure-
ments using finite resources.
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Figure 2. Deviation from the ideal work estimate for a
qubit system and a 3-qubit pointer. For an atomic two-
level system driven out of equilibrium by a classical electro-
magnetic field, the Rabi oscillations can be represented by
the unitary UΛ(θ) ≡ exp (−i θ

2
σy) (for a derivation see Ap-

pendix A.7). The qubit is initially thermal, ρ(0)S = τ (0)S , at
room temperature (kBβS)−1 = 300K, and has a Hamiltonian
H(0)
S = H(f)

S = −ESσz/2 with σz = ∣0 ⟩⟨0 ∣ − ∣1 ⟩⟨1 ∣ and an en-
ergy gap in the microwave regime such that βSES ≈ 1/30.
The 3-qubit pointer is initially in the thermal state τ(βP )⊗3

where each of the three qubits has the same Hamiltonian
HP = −EPσz/2 and we assume EP = ES/10. The dashed lines
show the deviation ∣⟨W ⟩non−id − ⟨W ⟩Λ∣ in units of ES as a
function of θ for different ratios of the system and pointer
temperature, i.e., βP /βS = 1, and from βP /βS = 150 to 750
in steps of 150. The dotted black line shows the ideal work⟨W ⟩Λ (i.e., a pure state pointer). At θ = 0, the deviation is
maxmial while the ideal work estimate vanishes, whereas for
θ = π, the ratio ∣⟨W ⟩non−id −⟨W ⟩Λ∣/⟨W ⟩Λ approaches 1/2 (the
precise value is 0.49875).

where ∥A∥∞ ∶= maxi ∣∣∑j a∗ij ∣∣1 and A = (aij). In this
sense, Cmax can be thought of as representing the trust-
worthiness of the work estimate, in addition to its re-
source cost. For a fixed process Λ, the closer Cmax is
to 1, the smaller the potential distance of the work esti-
mate from its ideal value, but also the higher the involved
costs.

A principal purpose of this paper is to highlight that
the difference ⟨W ⟩non−id − ⟨W ⟩Λ is non-negligible and in
some cases, rather significant. Indeed, in Fig. 2 we plot
this difference for a standard system-pointer Hamiltonian
with realistic parameters and find that the difference be-
tween the estimated ideal and non-ideal work is at times
more than twice as large.

One should be careful not to confuse ⟨W ⟩non−id with
the total work performed on the system or with the sys-
tem’s change in average energy ∆Enon−id. The latter can
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be expressed as

∆Enon−id = ∑
m,n,k

q(f)
kk∣m p(m∣n)p(0)n (E(f)

k −E(0)
n ) (16)

= C2
max ⟨W ⟩Λ + ∑

m,n
l≠n,k≠m

q(f)
kk∣mpl→mq(0)ll∣np(0)m (E(f)

k −E(0)
n )

+ Cmax ∑
m,n

p(0)n [ ∑
k≠m q

(f)
kk∣m pn→m (E(f)

k −E(0)
n )

+ ∑
l≠n q

(0)
ll∣n pl→m (E(f)

m −E(0)
n )],

and generally contains contributions associated with
both the work done on the system and heat transferred
from the pointer to the system. Here, we make two ob-
servations. First, the work estimate ⟨W ⟩non−id generally
does not match the ideal work estimate ⟨W ⟩Λ = ∆EΛ,
the actual work done on the system, or the change in av-
erage energy ∆Enon−id. Second, while ∆Enon−id captures
the average energy change of the system, the average en-
ergy change of the pointer is not yet included and has
to be considered separately [14]. This contribution de-
pends on the specific dimension of the pointer and the
structure of its Hamiltonian, which in turn determine
Cmax. Ideal measurements can be approached by in-
creasing the pointer dimension (e.g., measuring a system
with an N -qubit pointer and increasing N), or by cool-
ing the pointer to a smaller but non-vanishing tempera-
ture (using a desired refrigeration paradigm [33, 34, 47–
49]); these measures all increase the work cost of the
measurement [14, A.7]. Achieving the limit Cmax → 1,
requires infinite time, infinite energy, or infinite con-
trol (e.g., N → ∞) and in this limit one also recovers⟨W ⟩non−id = ⟨W ⟩Λ = ∆EΛ = ∆Enon−id. When limited by
finite resources, ⟨W ⟩non−id = ⟨W ⟩Λ can only be achieved
for specific processes Λ, as we discuss in Appendix A.3.b.

IV. FLUCTUATION RELATIONS

Besides work estimates, higher statistical moments of
work are relevant in many contexts, from the study of
quenched quantum many-body systems [50, 51] to the
performance of quantum thermal machines [52], or the
development of effective charging protocols [53]. For dis-
cussions about the quantum-classical correspondence of
work distributions see Refs. [54–58].

The quantification of work fluctuations [16–19] in the
context of Jarzynski’s and Crooks’ fluctuation relations
using the ideal TPM scheme has been studied in Ref. [21].
Here we are interested in exploring whether these uni-
versal relations are recovered within the non-ideal TPM
scheme. In particular we explore the statistical proper-
ties of the work estimate ⟨W ⟩non−id. We first focus on the
Jarzynski equality [59] for which the quantity of interest
is the work functional ⟨e−βW ⟩. Using the properties of

the non-ideal TPM scheme we obtain

⟨e−βW ⟩non−id = χe−β∆F , (17)

where we have introduced the correction term

χ ∶= 1Z(f) ∑n,m,le−βE
(f)
m q(0)

ll∣n∣ ⟨E(f)
m ∣UΛ ∣E(0)

l ⟩ ∣2. (18)

Here, the partition function is Z(f) ∶= Tr[e−βH(f)], and
∆F ∶= kBT log(Z(0)/Z(f)) is the difference in Helmholtz
free energies between the initial state and the thermal
state τ (f) w.r.t. H(f). By construction 0 ≤ χ ≤ dS .
When χ = 1 one has the original Jarzynski relation,⟨e−βW ⟩ = e−β∆F , which is satisfied by all ideal measure-
ments. We notice that the breakdown of the original
Jarzynski equality is expected here, since the invasiveness
of the first non-ideal measurement spoils the requirement
that the system starts the process Λ in thermal equilib-
rium.

Nonetheless, we find that there exists a class of non-
ideal measurements for which χ = 1 as well. This is the
case when ∑n q(0)ll∣n = 1 ∀l. This implies that in order to

recover Jarzynski’s relation, the matrix in Eq. (18) needs
to be doubly stochastic. We call these measurements
minimally invasive UMC measurements, and they corre-
spond to unital maps, whose average effect is to preserve
the identity operator on the system (for details see Ap-
pendix A.1.d). Using Eq. (17) and Jensen’s inequality,
exp ⟨x⟩ ≤ ⟨expx⟩, we can write the following second-law-
like inequality

⟨W ⟩non−id ≥ ∆F − kBT logχ, (19)

which provides a lower bound for the non-ideal TPM
work estimate ⟨W ⟩non−id. Since 0 ≤ χ ≤ dS , the extra
term −kBT logχ can be either positive or negative. For
non-ideal measurements that are unital (χ = 1) this term
vanishes and the equation above reduces to the usual
second-law inequality ⟨W ⟩non−id ≥ ∆F .

Interestingly, we observe that minimal energy UMC
measurements do not, in general, correspond to mini-
mally invasive measurements (except for the special case
of a single-qubit system, see Appendix A.1.d). This
can be understood in the following way: For minimal
energy UMC measurements, all elements of the post-
interaction state ρ̃SP that depend on the outcome proba-
bilities ρii = ⟨ i ∣ρS ∣ i ⟩ can be collected in a correlation
matrix of dimension dP /dS × dP /dS with blocks Γij =∣ i ⟩⟨ i ∣⊗Πj ρ̃SP ∣ i ⟩⟨ i ∣⊗Πj . Property (i) (unbiasedness) fixes
Tr(Γij) = ρjjqii∣j and maximal correlations are achieved
when qii∣i = Cmax is satisfied. Minimal energy means that
the remaining qii∣j for i ≠ j within each column are or-
dered such that qii∣j ≥ qkk∣j∀k ≥ i with k ≠ j. This is gen-
erally not compatible with row sums ∑j qii∣j = 1 required
for qii∣j to be doubly stochastic and thus correspond to a
minimally invasive measurement.
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Figure 3. Schematic representing the non-reversibility of the
process Λ. The system is initially at a thermal state τ (0) =
exp(−βH(0))/Z(0) is driven out of equilibrium by the unitary

transformation UΛ to the state ρ(f) = UΛτ
(0)U�

Λ. At the end of
the process, the system is left to thermalise to the equilibrium
state τ (f) = exp(−βH(f))/Z(f), described by the Hamiltonian
H(f). In the time reversed protocol, the thermal state τ (f)
is driven out of equilibrium to state ρ(0) = UΛ̃τ

(f)U�

Λ̃
. The

process is reversible if ρ(f) = τ (f) and ρ(0) = τ (0).

One can, however, ensure that the measurement is min-
imally invasive and unbiased at the expense of moving
away from the energy minimum. One can show that this
additional cost only depends on the system Hamiltonian
(and not the pointer Hamiltonian). Thus, by accepting
this cost, non-ideal measurements can satisfy Jarzynski’s
relation.

To investigate the effect of non-ideal measurements
on the irreversibilty of a process, we turn to Crooks’
theorem [60]. This relates the probabilities PF(W ) of
performing some work during a realisation of the TPM
scheme and PB(−W ) for extracting the same amount of
work when the time-reversed protocol Λ̃ is implemented:

PB(−W ) = e−β(W−∆F )PF(W ). (20)

The quantity W − ∆F is usually referred to as the dis-
sipated work, the work which is lost when the final state
of the TPM after the protocol, ρ(f) in Eq. (1), relaxes
back to equilibrium at temperature T . As we discuss in
Appendix A.6, Crooks’ relation (20) is not recovered in
the non-ideal TPM scheme, not even for minimally in-
vasive UMC measurements (unlike the Jarzynski equal-
ity). This is in contrast to the ideal TPM scheme, where
Crooks’ theorem can be recovered for all unitary and uni-
tal maps [61–64]. The reason is that, here, both non-ideal
measurements act as (independent) noise sources, dis-
turbing the initial states of the forward and backward
TPM processes, respectively. Reestablishing Crooks’
fluctuation theorem may eventually require considering
the work performed in the measurement processes and,
therefore, taking into account the energy changes in the
pointers.

Eq. (20) expresses the fact that finite-time processes
that drive systems out of equilibrium are irreversible and

thus the consumed work is unlikely to be recovered when
reversing the protocol (See Fig. 3). This irreversibility
can be captured [22, 23] by the average of the dissipated
work appearing in Eq. (20), and is related to the en-
tropy production during a hypothetical relaxation of ρ(f)
to the thermal equilibrium state τ (f) [64, 65]. When the
measurements for determining this dissipated work are
non-ideal, additional entropy is produced, resulting in
greater energy dissipation in the final relaxation. In Ap-
pendix A.6.b, we calculate the average estimated work
performed in addition to the free energy change to be

⟨W ⟩non−id −∆F = kBT [∆S(0) +D(ρ̃(f)∣∣τ (f))], (21)

where ρ̃(f) is the unconditional final state after the pro-
cess Λ, D(ρ(f)∣∣τ (f)) ≥ 0 is the relative entropy quantify-
ing the irreversibility in the ideal process [66, 67] and
∆S(0) = S(ρ̃(0)) − S(τ (0)) is the corresponding change
in von Neumann entropy of the system due to the first
non-ideal measurement. For non-ideal, minimally inva-
sive measurements (⟨W ⟩non−id −∆F ) ≥ 0 in which case it
may be interpreted as the entropy production. For these
measurements, the von Neumann entropy of the system
cannot decrease [67] and the entropy of the pointer during
the measurement does not change (see, e.g., [64]). Thus,
the total entropy produced in the measurement coincides
with the entropy change in the system, ∆S(0) ≥ 0. When
ideal projective measurements are considered, ∆S(0) = 0,
and the usual expression for the entropy production is
recovered. In this ideal case, Kawai, Parrondo and Van
den Broeck [22, 23] derived an important result in non-
equilibrium thermodynamics, which is closely related to
Crook’s fluctuation theorem

⟨W ⟩Λ −∆F = kBTD(ρF(t)∣∣Θ�ρB(tf − t)Θ). (22)

Here, ρF(t) and ρB(tf − t) are the density operators in
the forward and backward processes taken at the same
instance of time t and Θ is the time-reversal opera-
tor in quantum mechanics. Θ is anti-unitary, satisfies
Θi1 = −i1Θ and ΘΘ� = Θ�Θ = 1, and is responsible for
changing the sign of odd variables under time reversal
(momentum, magnetic field, etc.) [68]. Equation (22) es-
tablishes a deep relationship between the physical and
information-theoretical notion of irreversibility. Namely,
it connects the dissipated work (left-hand side), which
is a physical measure of irreversibility, with the relative
entropy at any snapshot of time (right-hand side), which
is an information-theoretical measure. We are able to
extend this result to the non-ideal TPM scheme by using
the generalised dissipation relation in Eq. (21). In the
modified scheme we get that

⟨W ⟩non−id −∆F = kBT [∆S0 +∆Df++D(ρF(t)∣∣Θ�ρB(tf − t)Θ)], (23)

where ρF(t) = UΛ(t,0)ρ̃(f)U �
Λ(t,0) is the system state at

intermediate time 0 ≤ t ≤ tf in the forward process and
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ρB(tf − t) = UΛ̃(tf − t,0)ρ(f)B U
�

Λ̃
(tf − t,0) is the state of

the system at the same instance of time in the backward
process5 (see Appendix A.6). We have introduced the
correction term

∆Df = Tr[ρ̃(f) (log τ (f) − log ρ(f)B )], (24)

whereby starting in τ (f), the average system state ρ(f)B

is obtained after the first non-ideal measurement in the
backward process. The ideal case in Eq. (22) is recovered
when ρ(f)B = τ (f) and ρ̃(0) = τ (0), making ∆Df = 0 and
∆S(0) = 0. Finally, we stress that, analogously to what
happens with the result in Eq. (22) for the ideal TPM
scheme, Eqs. (21) and (23) can be turned into inequalities
for open system dynamics (see Appendix A.6.b).

V. DISCUSSION

We have studied the consequences of fundamentally
unavoidable measurement imperfections on the estima-
tion of work and its fluctuations in out-of-equilibrium
processes. Non-ideal measurements lead to a mismatch
between the obtained estimate ⟨W ⟩non−id, the desired
ideal estimate ⟨W ⟩Λ, and the actual work performed on
the system during the non-ideal TPM. In addition, an
energy cost is incurred for operating the measurement
apparatus. This leads to the conclusion that the process
of estimating work itself has a work cost, which increases
with increasing precision of the estimate. Moreover, we
find that the statistical properties of the non-ideal es-
timate ⟨W ⟩non−id are modified. While the celebrated
Jarzynski relation may be recovered exactly by impos-
ing specific conditions on the measurement scheme, the
more general Crooks theorem no longer holds. In this
context, we discussed the connection between the non-
ideal work estimate and the entropy production in the
TPM scheme, and extended previous results for the rela-
tion between dissipation and irreversibility.

These results are of particular relevance for work ex-
traction: When the costs for estimating the extracted
work are of the order of the extracted work itself the
usefulness of the procedure is dramatically limited. Con-
ceptually, our results can be seen as a constructive resolu-
tion of the perceived shortcomings of the TPM discussed
in [65]. It might also be interesting to consider work es-
timates as well as Jarzynski’s equality and Crooks’ theo-
rem in more general contexts, such as including feedback
control strategies [69, 70].

Our results about the validity of the Jarzynski equality
and Crooks’ fluctuation theorem for the non-ideal TPM
scheme are in agreement with very recent results reported

5 UΛ̃(tf − t,0) is the unitary evolution generated by the time-

reversed protocol Λ̃.

in Ref. [71], which appeared during the final stages of
preparing this manuscript.
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APPENDICES

In these appendices, we provide more details on the mathematical model for non-ideal measurements from Ref. [14]
and its application for work estimation described in this paper. In Appendix A.1, we describe the properties of the
important class of unbiased maximally correlated (UMC) measurements, as well as of minimal energy UMC measure-
ments and illustrate them for the case of 3-dim quantum system. In Appendix A.2, we give a detailed derivation
of the joint probability for the measurement outcomes in the TPM scheme [20, 21] using non-ideal measurements.
We then derive the corresponding work estimate in Appendix A.3 and the change in average energy throughout the
estimation process in Appendix A.4. Finally, we discuss the consequences for fluctuation theorems: In Appendix A.5,
we discuss the modification of Jarzynski’s relation, while Appendix A.6 explains why Crooks’ theorem generally no
longer holds in the presence of non-ideal measurements. In Appendix A.7 we present a physical model as an example
of the methods discussed in this work.

Appendix A.1: Ideal and Non-Ideal Measurements

We consider a measurement of a system described by an unknown quantum state ρS ∈ D(HS), where D(HS)
represents the set of density-matrices over the Hilbert space HS. We model the measurement as an interaction
between the system and a measurement apparatus (pointer) described by a quantum system with Hilbert spaceHP . We consider the pointer to be initially described by the thermal state τP (βP ) = exp(−βPHP )/ZP at ambient
temperature TP = (kBβP )−1 and with Hamiltonian HP = ∑iE(P )

i ∣E(P )
i ⟩⟨E(P )

i ∣. This ensures that the initial state of
the pointer does not contain any extractable work with respect to an environment at temperature TP . Alternatively,
one can consider the temperature TP to be lower than the environment temperature, assuming that work has been
invested to prepare the pointer by cooling it down to TP . System and pointer are correlated by a unitary Umeas on
the joint space HS ⊗HP such that all work supplied to the joint system can be identified with the overall change in
average energy due to the unitary transformation, resulting in a post-measurement state

ρ̃SP ∶= Umeas(ρS ⊗ τP )U �
meas. (A.1.1)

Within the pointer Hilbert space, different subspaces are assigned to represent the different measurement outcomes.
More specifically, if the system of dimension dS is to be measured in the basis {∣n ⟩}n=0,...,dS−1, then a set of orthogonal
projectors {Πn}n=0,...,dS−1 on the pointer Hilbert space is chosen to represent these outcomes, such that ∑nΠn = 1P
and ΠmΠn = δmnΠn and Tr(Πn)P./dS for all n. The general setup is illustrated in Fig. A.1.

ρS

τP
Umeas

n

ρn

Figure A.1. Circuit representing non-ideal measurements. The system in an initial state ρS interacts with the pointer originally
in a thermal state τP by means of unitary Umeas. The probability for obtaining a measurement outcome n is pn, and the
post-measurement system state conditioned on having obtained outcome n is ρn.

A.1.a. Unbiased Measurements

As explained in Sec. II (following Ref. [14]), ideal measurements have three characteristic properties, they are (ii)
faithful (perfect correlation between the pointer and system), (i) unbiased (pointer exactly reproduces the system
statistics in the measured basis), and (iii) non-invasive (system diagonal is undisturbed by the interaction). However,
satisfying property (ii) requires the preparation of pure pointer states, which is not possible with finite resources
according to the third law of thermodynamics. At the same time, this implies that realistic non-ideal measurements
cannot satisfy both properties (i) and (iii) simultaneously, see Ref. [14, Appendix A.3]. We hence focus on non-ideal
measurement procedures that are unbiased, i.e., which satisfy

Tr(1S ⊗Πnρ̃SP) = Tr(∣n ⟩⟨n ∣
S
ρS) ∀n ∀ρS . (A.1.2)

Provided that the pointer cannot be prepared in a pure state (i.e., that the measurement uses finite resources according
to the third law of thermodynamics), the corresponding unitary Umeas can be separated into two consecutive unitaries
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Ũ and V , such that Umeas = V Ũ , where

Ũ = dS−1∑
n=0

∣n ⟩⟨n ∣
S
⊗ Ũ (n), and V = dS−1∑

m,n=0

dP /dS∑
i=1

∣m ⟩⟨n ∣
S
⊗ ∣ ψ̃(n)i ⟩⟨ ψ̃(m)i ∣

P
. (A.1.3)

Here, {∣ ψ̃(n)i ⟩}i,n is an orthonormal basis of HP such that Πn = ∑i ∣ ψ̃(n)i ⟩⟨ ψ̃(n)i ∣ and the Ũ (n) are arbitrary unitaries onHP , and we have assumed that the dimension dP of the pointer is an integer multiple of the system dimension dS (or
is truncated to such a dimension). The intuition behind this decomposition is as follows. The operation V ensures
unbiasedness by mapping the subspace corresponding to the system state ∣n ⟩

S
to the subspace corresponding to the

pointer outcome n (i.e., Πn), that is, V can be understood as a type of swap between these subspaces. The operation
Ũ , meanwhile, adds additional freedom by allowing unitary transformations within each of the subspaces for the states∣n ⟩

S
. To illustrate this transformation, let us consider an example of a 3-dimensional system with non-degenerate

Hamiltonian, and a suitable pointer of dimension dP = 3λ for λ ∈ N. The initial state ρS ⊗ τP of system and pointer
can be expressed in matrix form as

ρSP = ⎛⎜⎜⎝
p0 τP ⋅ ⋅⋅ p1 τP ⋅⋅ ⋅ p2 τP

⎞⎟⎟⎠ ,´¹¹¹¹¸¹¹¹¹¶´¹¹¹¹¸¹¹¹¹¶ ´¹¹¹¹¸¹¹¹¶∣ 0 ⟩S ∣ 1 ⟩S ∣ 2 ⟩S
(A.1.4)

where pi = ⟨ i ∣ρS ∣ i ⟩ and the dots indicate potentially nonzero off-diagonal elements of ρS that are not shown here to
keep the example simple, but could be included explicitly if desired. An unbiased measurement procedure realized by
a unitary interaction with the pointer then leads to a final joint state of the form

Π0 Π1 Π2 Π0 Π1 Π2 Π0 Π1 Π2³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ

ρ̃SP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ00 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ Γ01 ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ Γ02 ⋅ ⋅ ⋅ ⋅⋅ ⋅ Γ10 ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ Γ11 ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ Γ12 ⋅ ⋅⋅ ⋅ ⋅ ⋅ Γ20 ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ Γ21 ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Γ22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣ 0 ⟩S ∣ 1 ⟩S ∣ 2 ⟩S (A.1.5)

where the Γij are the (dP /dS) × (dP /dS) matrices corresponding to ∣ i ⟩⟨ i ∣
S
⊗ Πj ρ̃SP ∣ i ⟩⟨ i ∣

S
⊗ Πj . The colour coding

corresponds to the projections on to the subspaces for fixed outcomes. That is, the operators 1S ⊗Πn ρ̃SP1S ⊗Πn, can
be written as

1S ⊗Πn ρ̃SP1S ⊗Πn = dS−1∑
m,m′=0

dP /dS∑
i,j=1

⟨n ∣ρS ∣n ⟩ ⟨ ψ̃(m)i ∣ Ũ (n)τP Ũ (n)� ∣ ψ̃(m′)j ⟩ ∣m ⟩⟨m′ ∣
S
⊗ ∣ ψ̃(n)i ⟩⟨ ψ̃(n)j ∣

P

=̂ pn Ũ (n)τP Ũ (n)�. (A.1.6)

In other words, the 1S⊗Πn ρ̃SP1S⊗Πn for n ∈ {0,1, . . . , dS−1} have rank dP and can be understood as dP ×dP matrices
with the same spectra as pnτP . They are in this sense unitarily equivalent [via application of the unitaries Ũ (n) from
Eq. (A.1.3)] to pnτP , such that the trace of these operators gives pn, as required by unbiasedness in Eq. (A.1.2). In
terms of the indicated diagonal blocks of each subspace for fixed Πn (fixed colour), we have ∑2

i=0 Tr(Γin) = pn ∀n.
More specifically, since the measurement has to be unbiased independently of the initial system state ρS, one has to
have

TrP(1S ⊗Πn ρ̃SP1S ⊗Πn) = pn ρn, (A.1.7)
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where ρn ∈ D(HS) is the post-measurement system state conditioned on observing the pointer outcome n. The
conditional states ρn correspond to coarse-grainings of the operators Ũ (n)τP Ũ (n)� in the sense of the equivalence “=̂”
of Eq. (A.1.6). The states ρn are hence independent of ρS. We write them as ρn = ∑

l,l′
qll′∣n ∣ l ⟩⟨ l′ ∣ with ∑l qll∣n = 1 ∀n

and

qll′∣n = dP /dS∑
i=1

⟨ ψ̃(l)i ∣ Ũ (n)τP Ũ (n)� ∣ ψ̃(l′)i ⟩ . (A.1.8)

A.1.b. Unbiased Maximally Correlated Measurements

Within the set of unbiased measurement procedures, one may then wish to select those measurements which
maximise the correlation measure C(ρ̃SP ) that is used in property (ii) to define faithful measurements (for which
C = 1). For unbiased measurements that are realised unitarily from an initially thermal pointer state, the maximal
value C = Cmax for unbiased measurements is obtained when the dP /dS largest eigenvalues of τP appear as the
eigenvalues of the matrices Γnn for each n. This requires the off-diagonal elements in ρ̃SP connecting the correlated
subspaces defined by the projectors ∣n ⟩⟨n ∣⊗Πn with the uncorrelated subspaces defined by the projectors ∣m ⟩⟨m ∣⊗Πn

for m ≠ n to vanish, resulting in a joint state of the form

Π0 Π1 Π2 Π0 Π1 Π2 Π0 Π1 Π2³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ

ρ̃SP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ00 ⋅ ⋅ 0 ⋅ ⋅ 0 ⋅ ⋅⋅ Γ01 ⋅ ⋅ 0 ⋅ ⋅ ⋅⋅ ⋅ Γ02 ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ Γ10 ⋅ ⋅ ⋅ ⋅⋅ 0 ⋅ ⋅ Γ11 ⋅ ⋅ 0 ⋅⋅ ⋅ ⋅ ⋅ Γ12 ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ Γ20 ⋅ ⋅⋅ ⋅ ⋅ 0 ⋅ ⋅ Γ21 ⋅⋅ ⋅ 0 ⋅ ⋅ 0 ⋅ ⋅ Γ22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣ 0 ⟩S ∣ 1 ⟩S ∣ 2 ⟩S

(A.1.9)

where the remaining blocks in the correlated subspace now satisfy Tr(Γnn) = pnCmax, see Ref. [14, Eq. (5)]. From
Eq. (A.1.7) we can then conclude that the coefficients of the conditional states for unbiased maximally correlated
measurements (UMC) satisfy

qnn∣n = Cmax = dP /dS−1∑
i=0

exp (−βPE(P )
i )ZP ∀ n, (A.1.10)

where we have assumed that the eigenvalues of the pointer Hamiltonian are ordered non-decreasingly, i.e., E(P )
i ≥ E(P )

j

for i ≥ j, while some of the off-diagonals of ρn are more restricted, qnl∣n = qln∣n = 0∀l ≠ n. In particular, this
last condition implies that the conditional post-measurement state of the system for UMC measurements takes the
block-diagonal form

ρn = Cmax ∣n ⟩⟨n ∣ + (1 −Cmax)ρerror

n , (A.1.11)

where ρerror

n is density operator on the Hilbert space spanned by the vectors {∣m ⟩
S
} for m ∈ {0,1, . . . , dS − 1}/n such

that ⟨n ∣ρerror

n ∣ l ⟩ = ⟨n ∣ρerror

l ∣n ⟩ = 0∀ l.
The maximal correlation value Cmax can further be used to quantify the distance between the conditional post-

measurement state ρn of UMC measurements and the pure state ∣n ⟩. Using the trace distance D(X,Y ) = 1
2
∥X − Y ∥1 ≡
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1
2
Tr

√(X − Y )(X − Y )� between two operators X and Y , and the block-diagonal structure of ρn we can calculate

D(ρn, ∣n ⟩⟨n ∣) = 1

2
Tr

√[ρn − ∣n ⟩⟨n ∣]2 = 1

2
Tr

√[(Cmax − 1) ∣n ⟩⟨n ∣ + (1 −Cmax)ρerror
n ]2

= 1

2
Tr

√(Cmax − 1)2 ∣n ⟩⟨n ∣ + (1 −Cmax)2(ρerror
n )2 = 1

2
[(1 −Cmax)Tr(∣n ⟩⟨n ∣) + (1 −Cmax)Tr(ρerror

n )]
= 1 −Cmax. (A.1.12)

A.1.c. Minimal Energy UMC Measurements

One can then further restrict the set of considered unitaries Umeas by demanding minimal energy consumption.
That is, that the measurement implemented by Umeas achieves the algebraic maximum of correlations and spends the
least amount of energy as compared with all other unitary operations achieving Cmax, i.e.,

∆Emeas = min
Umeas

Tr[(HS +HP )(ρ̃SP − ρS ⊗ τP )] s.t. C(ρ̃SP ) = Cmax. (A.1.13)

A requirement in order to spend the minimum amount of energy in the measurement process is not to waste energy
on creating coherences [72]. Conversely, any coherence with respect to energy eigenstate with different energies would
imply that there exists a unitary transformation that shifts probability from higher energies to lower energies. In
other words, such states would not be passive [46]. For the sake of illustrating the effect on the form of the final state
for our example, let us assume that both the system and pointer Hamiltonians are non-degenerate. Then, the final
state for a minimal energy UMC measurement must be of the form

Π0 Π1 Π2 Π0 Π1 Π2 Π0 Π1 Π2³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ ³·µ

ρ̃SP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ00 ⋅ ⋅ 0 ⋅ ⋅ 0 ⋅ ⋅⋅ Γ01 ⋅ ⋅ 0 ⋅ ⋅ 0 ⋅⋅ ⋅ Γ02 ⋅ ⋅ 0 ⋅ ⋅ 0

0 ⋅ ⋅ Γ10 ⋅ ⋅ 0 ⋅ ⋅⋅ 0 ⋅ ⋅ Γ11 ⋅ ⋅ 0 ⋅⋅ ⋅ 0 ⋅ ⋅ Γ12 ⋅ ⋅ 0

0 ⋅ ⋅ 0 ⋅ ⋅ Γ20 ⋅ ⋅⋅ 0 ⋅ ⋅ 0 ⋅ ⋅ Γ21 ⋅⋅ ⋅ 0 ⋅ ⋅ 0 ⋅ ⋅ Γ22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣ 0 ⟩S ∣ 1 ⟩S ∣ 2 ⟩S

(A.1.14)

where all remaining diagonal blocks Γmn must now be diagonal matrices themselves, and Tr(Γnn) = pnCmax ∀n as
before. In addition, the energy minimisation imposes constraints on (I) the assignment of the remaining eigenvalues
of τP to the matrices Γmn for m ≠ n in the uncorrelated subspaces, and (II) on the ordering of the eigenvalues within
each specific block. What is crucial here is the observation that (I) corresponds to arranging the eigenvalues of τP in
descending order and splitting the resulting list into three (in general dS) sets a(0), a(1), and a(2) that we can interpret
as diagonal (dP /dS) matrices with diagonal elements

a(n)k = τ
n
dP
dS

+k (A.1.15)

for k = 1, . . . , dP /dS and n = 0, . . . , dS − 1. Minimising the energy while maintaining a UMC measurement then means
that the set a(0) of largest entries is assigned to the correlated subspaces, Γnn = pn a(0) ∀n, and the other a(i) with
i > 0 are assigned to the blocks Γmn with m ≠ n such that the lower energies are combined with the larger weights
(higher values of i).

At this point, it becomes useful to switch to a reduced description of the final state that captures only the diagonal
blocks Γij . We therefore define a quantity we refer to as the correlation matrix Γ = (Γij) in this context, where, as
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before, the Γij are the (dP /dS) × (dP /dS) matrices corresponding to ∣ i ⟩⟨ i ∣
S
⊗Πj ρ̃SP ∣ i ⟩⟨ i ∣

S
⊗Πj . With this notation,

the correlation matrix of the final state for a minimal energy UMC measurement takes the form

Γ =
⎡⎢⎢⎢⎢⎢⎢⎣

Γ00 Γ01 Γ02

Γ10 Γ11 Γ12

Γ20 Γ21 Γ22

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
p0 a

(0) p1 a
(1) p2 a

(1)
p0 a

(1) p1 a
(0) p2 a

(2)
p0 a

(2) p1 a
(2) p2 a

(0)

⎤⎥⎥⎥⎥⎥⎥⎦
. (A.1.16)

Alternatively, we may write the correlation matrix elements Γij as Γij = pj a(π̃ij) where π̃ = (π̃ij) is a dS × dS matrix
with entries π̃ij ∈ {0,1, . . . , dS − 1}. Unbiasedness requires that each element of {0,1, . . . , dS − 1} appears exactly once
in each column of π̃, that is, {π̃ij}i=0,1,...,dS = {0,1, . . . , dS − 1}. Achieving maximal correlation Cmax for an unbiased
measurement further fixes the diagonal of π̃, i.e., π̃ii = 0∀ i. Finally, minimal energy of UMC measurements implies
that the off-diagonal elements of π̃ are arranged such that the lowest values fill up the top rows (for lowest row index
i) of π̃ first, that is, for a fixed j π̃ij = i + 1 if i < j and π̃ij = j if i > j. More details on minimal energy UMC
measurements can be found in Ref. [14, Appendices A.8 and A.9].

A.1.d. Minimally Invasive UMC Measurements

As we have discussed in Sec. II (following Ref. [14]), non-ideal measurement procedures cannot be both unbiased
and non-invasive. However, while one cannot construct an unbiased measurement that is non-invasive for all initial
system states ρS, one can indeed construct unbiased measurements that leave (the diagonal of) certain system states
invariant. One case that is of specific interest here (and goes beyond what is considered in Ref. [14]) is the case
of UMC measurements, which leave the maximally mixed state ρS = 1S/dS invariant. For this maximum entropy
state, all initial probabilities are the same, pn = 1/dS ∀n. At the same time, we observe that the diagonal elements⟨n ∣TrP (ρ̃SP ) ∣n ⟩ of the post-measurement system state are obtained by taking the trace of the sum of the elements
of the nth row of the correlation matrix Γ.

We thus observe that such a map, which we call minimally invasive UMC measurements, can be realized if each
row of Γ features each superscript index i of a(i) exactly once. Together with the unbiasedness requirement we see that
unbiased measurements are minimally invasive if and only if π̃ is a Latin square. That is, each row and each column
of π̃ features each element once and only once. It is interesting to note that any minimal energy UMC measurement
can thus be turned into a minimally invasive UMC measurement, and vice versa, by rearranging the entries of the
Γ within its columns only. This implies that the additional energy cost for moving away from the energy minimum
depends only on the spectrum of the system Hamiltonian, but not on the pointer Hamiltonian. At the same time,
this can be done in such a way that the energy is only minimally increased with respect to the minimal energy
UMC measurements, obtaining a minimal energy minimally invasive UMC measurement. For the example in dS = 3
discussed above, the correlation matrix for such a measurement takes the form

Γ =
⎡⎢⎢⎢⎢⎢⎢⎣

Γ00 Γ01 Γ02

Γ10 Γ11 Γ12

Γ20 Γ21 Γ22

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
p0 a

(0) p1 a
(2) p2 a

(1)
p0 a

(1) p1 a
(0) p2 a

(2)
p0 a

(2) p1 a
(1) p2 a

(0)

⎤⎥⎥⎥⎥⎥⎥⎦
. (A.1.17)

A property of minimally invasive UMC measurements that follows directly from the form described above is that the
conditional probabilities qll∣n for the system to be left in the lth energy eigenstate given a pointer outcome n form a
doubly stochastic matrix, i.e.,

∑
l

qll∣n = ∑
n

qll∣n = 1. (A.1.18)

As we will see in Appendix A.5, minimally invasive UMC measurements allow satisfying the Jarzynski relation.

Appendix A.2: The Non-Ideal TPM Scheme

The estimation of the work performed/extracted during the process (τ (0),H(0)) ΛÐÐ→ (ρ(f),H(f)) can be calculated by
means of the so called two projective measurement (TPM) process [20, 21], which consists of three steps. In the first,
one performs a projective measurement on τ (0) in the eigenbasis {∣E(0)

n ⟩}n=0,...,dS−1 of the initial Hamiltonian H(0),
obtaining an outcome n. Then one lets the resulting post-measurement system state evolve under the action of UΛ.
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Finally, a second projective measurement is performed in the eigenbasis {∣E(f)
n ⟩}n=0,...,dS−1 of the final Hamiltonian

H(f), resulting in an outcome m. The aim of the protocol is to estimate the work performed (or extracted) by the
process Λ based on the joint probability distribution p(n,m), which itself is estimated by repeating the procedure
sufficiently many times. For ideal projective measurements, the joint probability distribution can be written as [21]

p(n,m) = p(0)n pn→m, (A.2.1)

where p(0)n = 1Z(0) exp(−βE(0)
n ) are the diagonal elements of the initial thermal state τ (0) of the system, Z(0) =∑n exp(−βE(0)

n ) is the partition function w.r.t. the initial Hamiltonian and inverse temperature β. Note that the
inverse system temperature β need not match the initial inverse temperature βP of the pointer, which enters Cmax

from Eq. (A.1.10). The symbol pn→m = ∣ ⟨E(f)
m ∣UΛ ∣E(0)

n ⟩ ∣2 denotes the transition probability from an initial energy
eigenstate ∣E(0)

n ⟩ to a final energy eigenstate ∣E(f)
m ⟩. The work distribution, i.e., the probability density for performing

(or extracting) the work W given the process Λ is defined as

P (W ) = ∑
m,n

p(n,m) δ (E(f)
m −E(0)

n −W ) . (A.2.2)

On average the work spent or extracted by the process Λ is then obtained by integration, i.e.,

⟨W ⟩ = ∫ P (W )W dW, (A.2.3)

where the integral is taken over all possible values of work. The average work can be written in terms of the joint
probability p(n,m) by inserting Eq. (A.2.2) into Eq. (A.2.3), resulting in the expression

⟨W ⟩ = ∑
m,n

p(n,m) (E(f)
m −E(0)

n ) . (A.2.4)

Let us now consider the TPM scheme when the ideal projective measurements are replaced by non-ideal measure-
ments, more specifically, minimal energy UMC measurements as described in Appendix A.1. We discuss each step of
the process in detail below.

A.2.a. First Measurement

First, note that the initial system state for the TPM scheme is a Gibbs equilibrium state at the ambient temperature.
That is, here the system state to be measured during the first measurement is ρS = τ (0)(β), given by

τ (0)(β) = 1Z(0) exp(−βH(0)) = 1Z(0)∑n exp(−βE(0)
n )∣E(0)

n ⟩⟨E(0)
n ∣, (A.2.5)

with H(0) = ∑nE(0)
n ∣E(0)

n ⟩⟨E(0)
n ∣ at time t0. Then, we assume that the first non-ideal measurement is performed in

the eigenbasis of H(0). We assume that this measurement, though non-ideal, is unbiased [property (i) described in
Sec. II.2], such that a measurement result n is obtained with probability p(0)n = ⟨E(0)

n ∣ τ (0) ∣E(0)
n ⟩ = exp(−βE(0)

n )/Z(0).
Moreover, from here on, we restrict our investigation to non-ideal unbiased measurements that achieve maximal
correlation Cmax (UMC measurements) and either have minimal energy or are minimal energy minimally invasive
measurements, as described in Appendices A.1.c and A.1.d, respectively, such that the post-measurement state of the
system is diagonal w.r.t. the measurement basis, i.e.,

ρ(0)n = ∑
l

q(0)
ll∣n∣E(0)

l ⟩⟨E(0)
l ∣ ∀n , (A.2.6)

where q(0)
ll∣n is the the probability to find the post-measurement system in the state ∣E(0)

l ⟩ given the measurement result

n. In particular, the probability to correctly guess the energy eigenstate ∣E(0)
n ⟩, when the pointer shows n is given by

q(0)
nn∣n, which has the value

q(0)
nn∣n = Cmax (A.2.7)

for UMC measurements. The conditional probabilities q(0)
ll∣n are functions of the inverse temperature β, and the pointer

energies (since the initial pointer state is also a thermal state at ambient temperature T = 1/kBβ), but because the
measurement is unbiased, the conditional state ρ(0)n is independent of the system state τ (0) before the measurement.
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A.2.b. Evolution and Second Measurement

After the initial non-ideal measurement, the post-measurement conditional state ρ(0)n is evolving according to the
unitary UΛ corresponding to the process Λ. The unitary UΛ can be written as time evolution from an initial time t0
to a final time tf , UΛ = T+ exp (−i ∫ tft0 H(λt)) dt, where T+ denotes time-ordering, and λt is a control parameter for the

time-dependent Hamiltonian such that H(λt0) = H(0) and H(λtf ) = H(f). The time-evolved state prior to the second
measurement is thus

ρΛ

n = UΛρ
(0)
n U

�
Λ = ∑

l

q(0)
ll∣nUΛ∣E(0)

l ⟩⟨E(0)
l ∣U �

Λ . (A.2.8)

Finally, a second non-ideal measurement is performed on ρΛ

n w.r.t. the eigenbasis {∣E(f)
m ⟩} of H(f). Once again,

since the measurement is unbiased, the probability to obtain any particular outcome m only depends on the specific
system state prior to the measurement. However, in this case this state is ρΛ

n from Eq. (A.2.8) and hence depends on
the first outcome n. The conditional probability to obtain outcome m in the second measurement given outcome n
in the first measurement is thus

p(m∣n) = ⟨E(f)
m ∣ρΛ

n ∣E(f)
m ⟩ = ∑

l

q(0)
ll∣n ⟨E(f)

m ∣UΛ∣E(0)
l ⟩⟨E(0)

l ∣U �
Λ ∣E(f)

m ⟩ = ∑
l

q(0)
ll∣n pl→m, (A.2.9)

where pl→m = ∣ ⟨E(f)
m ∣UΛ ∣E(0)

l ⟩ ∣2. Consequently, the joint probability p(n,m) is obtained by multiplying with the
probability to obtain outcome n in the first measurement, i.e.,

p(n,m) = p(m∣n)p(0)n = p(0)n ∑
l

q(0)
ll∣n pl→m. (A.2.10)

Meanwhile, the post-measurement state after the second measurement, conditioned on having obtained outcome n
and m in the first and second measurement, respectively, is

ρ(f)
m∣n = ∑

k

q(f)
kk∣m∣E(f)

k ⟩⟨E(f)
k ∣ ∀m. (A.2.11)

As in the first measurement, the conditional post-measurement state of the system is independent of the pre-
measurement system state. In this case, this implies that ρ(f)

m∣n is indeed independent of the outcome n of the

first measurement.

Appendix A.3: Work Estimation in the Non-Ideal TPM Scheme

A.3.a. Non-Ideal Work Distribution and Estimate

To estimate the work in the TPM scheme based on non-ideal measurements (as before, we assume minimal energy
UMC measurements as described in Appendix A.1), some energy must be spent on the measurement processes,
where the precision in the estimate is directly dependent on the energy spent. Considering the joint probability in
Eq. (A.2.10) and the definition in Eq. (A.2.2), the probability distribution for inferring the work value W is

P (W ) = ∑
m,n

p(0)n ∑
l

q(0)
ll∣n∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2 δ ((E(f)

m −E(0)
n ) −W ) . (A.3.1)

We can now calculate the average work,

⟨W ⟩non−id = ∫ dWP (W )W = ∑
m,n

p(0)n ∑
l

q(0)
ll∣n∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2 (E(f)

m −E(0)
n ) , (A.3.2)

= ∑
m,n

q(0)
nn∣n p(0)n ∣ ⟨E(f)

m ∣UΛ ∣E(0)
n ⟩ ∣2 (E(f)

m −E(0)
n ) + ∑

m,n
∑
l≠n q

(0)
ll∣n p(0)n ∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2 (E(f)

m −E(0)
n ) .

Substituting for Cmax in Eq. (A.2.7), we arrive at

⟨W ⟩non−id = Cmax ∑
m,n

p(0)n ∣ ⟨E(f)
m ∣UΛ ∣E(0)

n ⟩ ∣2 (E(f)
m −E(0)

n ) + ∑
m,n
∑
l≠n q

(0)
ll∣n p(0)n ∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2 (E(f)

m −E(0)
n ) . (A.3.3)

Since ⟨W ⟩Λ = ∑m,n p(0)n ∣ ⟨E(f)
m ∣UΛ ∣E(0)

n ⟩ ∣2 (E(f)
m −E(0)

n ) we can write the non-ideal work estimate as

⟨W ⟩non−id = Cmax ⟨W ⟩Λ + ∑
m,n
∑
l≠n q

(0)
ll∣n p(0)n ∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2 (E(f)

m −E(0)
n ) . (A.3.4)
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A.3.b. Ideal versus Non-Ideal Work Estimate

Before moving on, let us discuss more about the difference between the work estimates based on ideal and non-ideal
(UMC) measurements. Noting that ⟨W ⟩Λ = ∆EΛ = Tr(UΛτ

(0)U �
ΛH

(f)) − Tr(τ (0)H(0)) and Tr(τ (0)H(0)) = ∑n p(0)n E(0)
n ,

we can use the expression of ⟨W ⟩non−id from Eq. (A.3.2) to write

⟨W ⟩non−id − ⟨W ⟩Λ = ∑
m,n

p(0)n ∑
l

q(0)
ll∣n ∣ ⟨E(f)

m ∣U ∣E(0)
l ⟩ ∣2E(f)

m − Tr(UΛτ
(0)U �

ΛH
(f)). (A.3.5)

The first term on the right-hand side of Eq. (A.3.5) can be rewritten as

∑
m,n

p(0)n ∑
l

q(0)
ll∣n∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2E(f)

m = Tr(∑
n

p(0)n ∑
l

q(0)
ll∣nUΛ∣E(0)

l ⟩⟨E(0)
l ∣U �

ΛH
(f)) = Tr(UΛ ρ̃

(0)
S U �

ΛH
(f)), (A.3.6)

where we have denoted the unconditional post-measurement state after the first measurement as ρ̃(0) ∶= ∑n p(0)n ρ(0)n
and we have used ρ(0)n = ∑l q(0)ll∣n∣E(0)

l ⟩⟨E(0)
l ∣. With this, we can rewrite Eq. (A.3.5) as

⟨W ⟩non−id − ⟨W ⟩Λ = Tr (UΛ(ρ̃(0) − τ (0))U �
ΛH

(f)) . (A.3.7)

If T → 0, then ρ̃(0) = τ (0) for any process Λ, which means that ⟨W ⟩non−id = ⟨W ⟩Λ, i.e., one obtains ideal projective
measurements. On the other hand if T is nonzero, ⟨W ⟩non−id = ⟨W ⟩Λ can be achieved only for specific processes Λ.
For example, for the unitary UΛ of the form

UΛ = 1√
dS
∑
j,k

e
− 2πi
dS
jk ∣E(0)

k ⟩⟨E(0)
j ∣, (A.3.8)

and [H(0),H(f)] = 0 we have ∣ ⟨E(f)
m ∣UΛ ∣E(0)

l ⟩ ∣2 = 1
dS

. It is then simple to check that

Tr (UΛρ̃
(0)U �

ΛH
(f)) = Tr (UΛτ

(0)U �
ΛH

(f)) = 1

dS
∑
m

E(f)
m . (A.3.9)

Consequently, one finds ⟨W ⟩non−id = ⟨W ⟩Λ. The intuition behind this example is the following. The disturbances due
to non-ideal UMC measurements do not generate coherences (off-diagonal elements) between states with different
energies in the initial thermal state. Consequently, the unconditional state upon which the process Λ acts is diagonal
in the energy eigenbasis. For any such state, the process chosen in our example results in a state whose diagonal
elements (w.r.t. the energy eigenbasis) are all equal to 1/dS. As a result, the average energy at the end of the protocol
is independent of the disturbance induced by the first measurement. We thus see that there exist processes such that⟨W ⟩Λ can be precisely estimated independently of the temperature of the pointer.

Let us now bound the deviation of the non-ideal work estimate ⟨W ⟩non−id from the ideal estimate ⟨W ⟩Λ. Starting
from the expression in Eq. (A.3.7), we can use Hölder’s inequality ∣Tr(XY �)∣ ≤ ∥X∥1 ∥Y ∥∞ to write

∣⟨W ⟩non−id − ⟨W ⟩Λ∣ ≤ ∥UΛ(ρ̃(0) − τ (0))U �
Λ∥

1
∥H(f)∥∞ = ∥ρ̃(0) − τ (0)∥1 ∥H(f)∥∞ , (A.3.10)

where in last step we have applied the trace invariance under unitary. For details about the properties of the trace
distance we refer the reader to, e.g., Ref. [73]. Inserting ρ̃(0) ∶= ∑n p(0)n ρ(0)n and τ (0) = ∑n p(0)n ∣E(0)

n ⟩⟨E(0)
n ∣, we can further

write

∥ρ̃(0) − τ (0)∥1 = ∥∑
n

p(0)n (ρ(0)n − ∣E(0)
n ⟩⟨E(0)

n ∣)∥
1
≤ ∑

n

∥p(0)n (ρ(0)n − ∣E(0)
n ⟩⟨E(0)

n ∣)∥
1
= ∑

n

p(0)n ∥ρ(0)n − ∣E(0)
n ⟩⟨E(0)

n ∣∥
1
, (A.3.11)

where we have used the triangle inequality in the second step. Finally, we recall that the 1-norm coincides with the
trace norm for the operators we consider here, and we insert from Eq. (A.1.12) before using ∑n p(0)n = 1 to arrive at

∣⟨W ⟩non−id − ⟨W ⟩Λ∣ ≤ (1 −Cmax) ∥H(f)∥∞ . (A.3.12)
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Appendix A.4: Energy Variation in Non-Ideal Work Estimation

In the scenario in which ideal projective measurements are not assumed, the change in the average energy of the
system in the TPM process is also different from the work estimate. Once again, we therefore consider non-ideal
minimal energy UMC measurements as described in Appendix A.1. To express the work estimate in this case, let us
first define the difference between the energy ∆Enon−id at the beginning and at the end of the TPM process

∆Enon−id = ∑
k

p(f)k E(f)
k −∑

n

p(0)n E(0)
n , (A.4.1)

where p(f)k is the probability to find the post-measurement system after the second measurement in the eigenstate∣E(f)
k ⟩ of H(f). This probability can be expressed as

p(f)k = ∑
m,n

q(f)
kk∣m p(m∣n)p(0)n , (A.4.2)

where q(f)
kk∣m is the conditional probability to find the system in the final energy eigenstate ∣E(f)

k ⟩ given the measurement

result m. The conditional probability p(m∣n) = ⟨E(f)
m ∣UΛ ρ

(0)
n U �

Λ ∣E(f)
m ⟩ is the probability to obtain outcome m in the

second measurement given that the result of the first measurement was n, as in Eq. (A.2.8). Collecting all these
expressions, we can rewrite the average energy difference between the initial system state and the system state after
the non-ideal TPM scheme as

∆Enon−id = ∑
m,n,k

q(f)
kk∣m p(m∣n)p(0)n (E(f)

k −E(0)
n ) = ∑

m,n

p(0)n ∑
k,l

q(0)
ll∣nq(f)kk∣m∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2(E(f)

k −E(0)
n ). (A.4.3)

We then split this expression into several sums, where the first collects all terms for which n = l and m = k, i.e.,

∆Enon−id = ∑
m,n

p(0)n [q(0)
nn∣n ∣ ⟨E(f)

m ∣UΛ ∣E(0)
n ⟩ ∣2 + ∑

l≠n q
(0)
ll∣n ∣ ⟨E(f)

m ∣UΛ ∣E(0)
l ⟩ ∣2][q(f)

mm∣m (E(f)
m −E(0)

n ) + ∑
k≠m q

(f)
kk∣m (E(f)

k −E(0)
n )]

= C2
max ⟨W ⟩Λ + Cmax ∑

m,n

p(0)n [ ∑
k≠m q

(f)
kk∣mpn→m(E(f)

k −E(0)
n ) + ∑

l≠n q
(0)
ll∣npl→m(E(f)

m −E(0)
n )]

+∑
m,n
l≠n
k≠m

p(0)n q(0)
ll∣n pl→m q(f)kk∣m (E(f)

k −E(0)
n ) . (A.4.4)

where we have used the shorthand pl→m = ∣ ⟨E(f)
m ∣UΛ ∣E(0)

l ⟩ ∣2 and we note that q(0)
nn∣n = q(f)

mm∣m = Cmax for all n and

m, since we are considering UMC measurements. For ideal projective measurements, Cmax → 1 and consequently
q(0)
ll∣n = δl,n, and therefore one can notice that ∆Enon−id(Cmax → 1) = ⟨W ⟩Λ.

Appendix A.5: Jarzynski Equality for Non-Ideal Projective Measurements

A.5.a. Characteristic Function and Jarzynski Equality

In [21] it was shown that by taking the Fourier transform of the work probability distribution P (W ) one can define
a following characteristic function, which we parametrise by u

G(u) = ∫ dWP (W ) exp (iuW ) = ∑
n,m

exp (iu(E(f)
m −E(0)

n ))p(n,m). (A.5.1)

We can calculate this function explicitly for the non-ideal projective measurement by substituting for the probabilities
p(n,m) from Eq. (A.2.10):

G(u) = ∑
m,n
∑
l

p(0)n q(0)ll∣n∣ ⟨E(f)
m ∣UΛ ∣E(0)

l ⟩ ∣2 (A.5.2)

= ∑
m

⟨E(f)
m ∣ exp (iuH(f))∑

n,l

exp (−iuE(0)
n )p(0)n q(0)ll∣nUΛ ∣E(0)

l ⟩ ⟨E(0)
l ∣U �

Λ ∣E(f)
m ⟩ (A.5.3)

= ∑
m

⟨E(f)
m ∣ exp (iuH(f))∑

n

exp (−iuE(0)
n )p(0)n UΛρ

(0)
n U

�
Λ ∣E(f)

m ⟩ , (A.5.4)
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where ∑l q(0)ll∣n ∣E(0)
l ⟩ ⟨E(0)

l ∣ = ρ(0)n is the post measurement state of the pointer that indicates outcome n with probability

p(0)n = exp (−βE(0)
n ) /Z(0). Here, we have again restricted our analysis to minimal energy UMC measurements as

described in Appendix A.1.
Let us then write

σ(u) = ∑
n

exp (−iuE(0)
n )p(0)n ρ(0)n = 1Z(0)∑n exp (−(iu + β)E(0)

n )ρ(0)n , (A.5.5)

which we then use to obtain the characteristic function

G(u) = Tr (exp (iuH(f))UΛσ(u)U �
Λ) . (A.5.6)

To calculate the work average ⟨exp(−βW )⟩, we further calculate G(u = iβ)
⟨exp(−βW )⟩ = G(u = iβ) = Tr [exp (−βH(f))UΛσ(iβ)U �

Λ] , (A.5.7)

where

σ(iβ) = 1Z(0)∑n exp (−(−β + β)E(0)
n )∑

l

q(0)
ll∣n ∣E(0)

l ⟩⟨E(0)
l ∣ = 1Z(0)∑l (∑

n

q(0)
ll∣n) ∣E(0)

l ⟩⟨E(0)
l ∣. (A.5.8)

Consequently, Jarzynski’s equality is satisfied if ∑n q(0)ll∣n = 1, i.e.,

⟨exp(−βW )⟩ = exp (−β∆F ) , (A.5.9)

where ∆F is the free energy ∆F = 1Z(0)Tr (exp(−βH(f))) = Z(f)Z(0) . The condition ∑n q(0)ll∣n = 1 is not generally met for all

unbiased measurements, and in particular not by any minimal energy UMC measurements beyond dimension6 dS = 2.
However, minimally invasive UMC measurements discussed in Appendix A.1.d satisfy exactly the desired condition,
thus allowing to satisfy the Jarzynski equality, while providing the correct (unbiased) measurement statistics and
achieving maximal correlation Cmax between the pointer outcomes and post-measurement system states.

Appendix A.6: Crook’s Relation in the Presence of Non-Ideal Measurements

A.6.a. Backward Process for Non-Ideal TPM Scheme

Crook’s theorem [60] quantifies the relation between the probability of observing a work value during a realisation
of the two projective measurement scheme for a given process Λ with the probability of observing the same amount of
work for the time-reversed process Λ̃. The time-reverse is defined in an operational sense, meaning that the sequence
of external operations (driving, measurements and so forth) used to bring the system out-of-equilibrium during the
original process is inverted in the time-reversed process. A prerequisite for obtaining Crook’s relation (as well as
the Jarzynski equalit [59]), is that both the forward and backward processes start with the system in equilibrium at
some given inverse temperature β. Therefore, the first step in studying whether Crook’s relation holds in the non-
ideal projective measurement setting (more specifically, restrict our analysis to minimal energy UMC measurements
described in Appendix A.1), is to define a meaningful time-reversed (backward) process. This is achieved in three
steps.

1. We start with a system with HamiltonianH(f) = ∑mE(f)
m ∣E(f)

m ⟩ ⟨E(f)
m ∣ that is in equilibrium at inverse temperature

β. The initial state of the backward process, which is to be transformed according to

(τ (f),H(f)) Λ̃ÐÐ→ (ρ(0)B ,H(0)) , (A.6.1)

reads τ (f) = e−βH(f)/Z(f) = ∑m p(f)m ∣E(f)
m ⟩ ⟨E(f)

m ∣. Prior to this transformation, the first non-ideal measurement is
performed in the eigenbasis {∣E(f)

m ⟩}m of H(f). Given that outcome m is obtained, which occurs with probability
p(f)m , the post-measurement state reads

ρ(f)m = ∑
k

q(f)
kk∣m ∣E(f)

k ⟩⟨E(f)
k ∣ . (A.6.2)

6 For the special case dS = 2, the unbiasedness condition already
leaves no choice but to make the matrix π̃ a Latin square, and

hence the measurement can be a minimal energy UMC measure-
ment that is also minimally invasive.
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2. The second step of the backward process consists of driving the system according to the time-reversed protocol
parameterized by {λ̃t = λtf−t; 0 ≤ t ≤ tf}, where {λt; 0 ≤ t ≤ tf} is a parameterizsation of the forward process. In
the time-reversed protocol, the system thus evolves according to

ρ(0)B = UΛ̃ ρ
(f)
B U �

Λ̃
, UΛ̃(tf ,0) = T+ exp(−i∫ tf

0
H(λ̃t)dt) , (A.6.3)

where ρ(f)B = ∑n p(f)n ρ(f)n is the average post-measurement state after the first measurement in the backward
process.

3. The last step consists of the second non-ideal measurement in the eigenbasis {∣E(0)
n ⟩}n of H(0). We are then

interested in determining the joint probability PB(m,n) to obtain outcome m in the first and outcome n in the
second non-ideal measurement, before and after the backward process, respectively. Given outcome m in the first
measurement, the probability for the system to be in an energy eigenstate ∣E(f)

k ⟩ is q(f)
kk∣m, and the probability

for the backward process to further map the system from the state ∣E(f)
k ⟩ to ∣E(0)

n ⟩ is p̃k→n = ∣ ⟨E(0)
n ∣UΛ̃ ∣E(f)

k ⟩ ∣2.
Consequently, we obtain the joint probability

PB(n,m) = ∑
k

p̃k→n q(f)kk∣m p(f)m . (A.6.4)

The micro-reversibility principle for non-autonomous systems implies UΛ̃ = ΘU �
ΛΘ� [21], where Θ is the anti-

unitary time-reversal operator satisfying Θi = −iΘ and ΘΘ� = Θ�Θ = 1. Micro-reversibility, together with a
time-reversal symmetric Hamiltonian, ΘH(k)Θ� =H(k) for k = 0, f, leads to the relationship ∣ ⟨E(0)

n ∣UΛ̃ ∣E(f)
k ⟩ ∣2 =∣ ⟨E(f)

k ∣UΛ ∣E(0)
n ⟩ ∣2, that is p̃k→n = pn→k.

For non-ideal projective measurements, Crook’s relation can be satisfied if we make some changes to the probability
distributions, as we shall explain now. To begin, let us consider the work probabilities of the forward and backward
process, respectively, i.e.,

PF(W ) = ∑
m,n

PF(n,m)δ ((E(f)
m −E(0)

n ) −W ) , (A.6.5)

PB(−W ) = ∑
m,n

PB(n,m)δ ((E(0)
n −E(f)

m ) +W ) , (A.6.6)

where PF(n,m) is given in Eq. (A.2.10). We then assume that the measurement apparatus in the forward and backward
process operates in the same way. More specifically, this means that the pointer is prepared in the same initial state
and the same unitary Umeas is used to couple system and pointer. In this case, we have q(0)

mm∣n = q(f)mm∣n ≡ qmm∣n. As in

Ref. [74], we write the ratio between the joint probabilities of a given transition between E(0)
n to E(f)

m in the forward
and backward process as

e−σ(n,m) ∶= PB(n,m)
PF(n,m) . (A.6.7)

The average of the quantity σ(n,m) defined by this ratio can be seen to be precisely the relative entropy between the
probability of the forwards and backwards processes

⟨σ⟩ = ∑
m,n

PF(m,n)σ(m,n) = ∑
m,n

PF(m,n) log(PF(m,n)
PB(m,n)) = D(PF∣∣PB), (A.6.8)

where the relative entropy of two random variables Q and P is defined D(P ∣∣Q) ∶= ∑x P (x) log (P (x)
Q(x)).

In order to express the relation between performing or extracting the same amount of work in the forward and
backward process, one can substitute (A.6.7) into (A.6.6)

PB(−W ) = ∑
m,n

e−σ(n,m)PF(n,m) δ ((E(0)
n −E(f)

m ) +W ) . (A.6.9)

It is straightforward to see that

exp (−σ(n,m)) = p(f)m
p(0)n

PB(n∣m)
PF(m∣n) = exp (−β(E(f)

m −E(0)
n −∆F )) PB(n∣m)

PF(m∣n) (A.6.10)
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where ∆F = β−1 log(Z(0)/Z(f)) is the equilibrium free energy difference, and the conditional probability to find the
state with energy n (m) after the backward (forward) process if initially it was m (n) is PB(n∣m) = ∑k pk→nqkk∣m
(PF(m∣n) = ∑l pl→mqll∣n). Therefore, a Crook’s-like relation for non-ideal projective measurements can be written as

PB(−W ) = e−β(W−∆F )P̃F(W ), (A.6.11)

with

P̃F(W ) = ∑
m,n

exp (−γ(m,n))PF(m,n)δ ((E(f)
m −E(0)

n ) −W ) , (A.6.12)

where γ(m,n) = log (PF(m∣n)/PB(n∣m)). If ideal projective measurements are assumed in the estimation process (in
other words, if an infinite amount of resources is available) no disturbance is created by the measurements on the
system in the forward and backward processes, which implies that qmm′∣n = δm,m′δm,n, and γ(m,n) = 0. Therefore
Eq. (A.6.11) results in the well known Crook’s relation

PB(−W ) = e−β(W−∆F )PF(W ). (A.6.13)

A.6.b. Irreversibility and Dissipation

Consider a thermal state τ (0)(β) of a system with Hamiltonian H(0) at time t0 that is driven out of equilibrium by
means of the unitary

UΛ(tf ,0) = T+ exp(−i∫ tf

0
H(λt)dt) . (A.6.14)

At time tf , the system is in the (out-of-equilibrium) state ρ(f) = UΛτ
(0)U �

Λ, and the Hamiltonian of the system is H(f).
Then the system is coupled again to a thermal bath at temperature T = 1/β, and left to thermalise to the equilibrium
state τ (f)(β).

The work dissipated in the driving process, defined as ⟨W ⟩Λ−∆F , is the extra amount of energy that is transferred
to the bath in the final thermalisation step, leading to entropy production. This energy cannot be reversibly recovered
by reversing the protocol. A closed-form expression for this amount of work presented in Ref. [23] is

⟨W ⟩Λ −∆F = kBTD(ρF(t)∣∣Θ�ρB(tf − t)Θ), (A.6.15)

where D(ρF(t)∣∣Θ�ρB(tf − t)Θ) is the relative entropy between the state ρF(t) = UΛ(t,0)τ (0)U �
Λ(t,0) out of equilibrium

at time t and ρB(tf−t) = UΛ̃(tf−t,0)τ (f)U �

Λ̃
(tf−t,0) is the state of the system in the backward process. Here UΛ̃(tf−t,0)

is the unitary evolution generated by the time-reversed protocol Λ̃. If the process is reversible, ρF(t) = Θ�ρB(tf − t)Θ
for any 0 ≤ t ≤ tf , and there is no work being dissipated in the process. In particular, the equilibrium state is reached
at time tf , that is, ρ(f) = τ (f).

Now, consider non-ideal projective measurements used for work estimation, more specifically, minimal energy UMC
measurements described in Appendix A.1. Here, we see that more energy is dissipated in the process because some
entropy is produced during the measurement process.

Proposition A.6.1. For work estimation based on non-ideal minimal energy UMC measurements measurements, the
work dissipated in the driving process is

⟨W ⟩non−id −∆F = kBT [D(ρ̃(f)∣∣τ (f)) +∆S0] , (A.6.16)

where ρ̃(f) = UΛ(∑n p(0)n ∑l q(0)ll∣n∣E(0)
l ⟩⟨E(0)

l ∣)U�
Λ and ∆S0 = S(ρ̃(0)) − S(τ (0)) is the entropy change in the system due to

the first non-ideal measurement.

Proof. For the TPM scheme with non-ideal measurements, the work estimate is as in Eq. (A.3.2), i.e.,

⟨W ⟩non−id = ∫ dWP (W )W = ∑
m,n

p(0)n ∑
l

q(0)
ll∣npl→m (E(f)

m −E(0)
n ) , (A.6.17)
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where pl→m = ∣ ⟨E(f)
m ∣UΛ ∣E(0)

l ⟩ ∣2. We then note that the thermal states with respect to the initial and final Hamilto-
nians are

τ (0) = exp(−βH(0))/Z(0) = ∑
n

p(0)n ∣E(0)
n ⟩⟨E(0)

n ∣, (A.6.18a)

τ (f) = exp(−βH(f))/Z(f) = ∑
m

p(f)m ∣E(f)
m ⟩⟨E(f)

m ∣, (A.6.18b)

where the partition functions are Z(0) = Tr (exp(−βH(0))) and Z(f) = Tr (exp(−βH(f))), and the probabilities for
the individual energy eigenstates are p(0)n = exp(−βE(0)

n )/Z(0) and p(f)m = exp(−βE(f)
m )/Z(f). The logarithms of the

probabilities above are log p(0)n = −βE(0)
n − logZ(0) and log p(f)m = −βE(f)

m − logZ(f). With this, we can rewrite the factor(E(f)
m −E(0)

n ) in ⟨W ⟩non−id and obtain

β⟨W ⟩non−id = ∑
m,n

p(0)n ∑
l

pl→m q(0)ll∣n ((− log p(f)m − logZ(f)) − (− log p(0)n − logZ(0))) . (A.6.19)

We then note that ∑m∑l pl→m q(0)ll∣n = 1 and identify the free energy ∆F = 1
β
(logZ(0) − logZ(f)), as well as the initial

thermal state entropy S(τ (0)) = −∑n p(0)n log p(0)n to write

β (⟨W ⟩non−id −∆F ) = −S(τ (0)) − ∑
m,n

p(0)n ∑
l

pl→m q(0)ll∣n log p(f)m = −S(τ (0)) −Tr(UΛ(∑
n

p(0)n ∑
l

q(0)
ll∣n∣E0

l ⟩⟨E0

l ∣)U �
Λ log τ (f))

= −S(τ (0)) −Tr (UΛρ̃
(0)U �

Λ log τ (f)) , (A.6.20)

where we have recognised the conditional post-measurement state ρ(0)n = ∑l q(0)ll∣n∣E0

l ⟩⟨E0

l ∣, and we have denoted the

unconditional post-measurement state as ρ̃(0) = ∑n p(0)n ρ(0)n . We can then add and subtract the entropy of ρ̃(f) =
UΛρ̃

(0)U �
Λ and use the invariance of the von Neumann entropy under unitaries, in particular, S(ρ̃(f)) = S(ρ̃(0)) to arrive

at

β (⟨W ⟩non−id −∆F ) =D(ρ̃(f)∣∣τ (f)) + S(ρ̃(0)) − S(τ (0)) = D(ρ̃(f)∣∣τ (f)) +∆S0. (A.6.21)

This result can be seen as a version of Eq. (A.6.15) applicable to non-ideal projective measurement when taking
t = tf , which expresses the amount of irreversible work in the process Λ calculated by means of the non-ideal TPM
scheme. ∆S0 represents the entropy change in the system due to the initial non-ideal measurement process, which
may be either positive or negative in general. However, for unital measurements, the entropy of the pointer does not
change [64] and, as a consequence, the second law implies ∆S0 ≥ 0, which can now be interpreted as the entropy
production in the measurement process.

Proposition A.6.2. Consider a system of dimension dS, and an interaction between system and pointer such that
their correlations are maximal, C(ρ̃SP ) = (Cmax), for instance, any UMC measurement. Then the entropy produced
in the measurement process satisfies

∆S0 ≤ (1 −Cmax) log(dS − 1) +H2(Cmax), (A.6.22)

where H2(x) = −x logx − (1 − x) log(1 − x) is the binary entropy of the random variable x with 0 ≤ x ≤ 1.

Proof. This inequality comes directly from the Fannes-Audenaert inequality in Refs. [75, 76]

S(ρ̃(0)) − S(τ0) ≤D(ρ̃0), τ0) log(dS − 1) +H2(D(ρ̃(0), τ (0)0 )), (A.6.23)

where D(ρ̃(0), τ (0)) = 1
2
∥ρ̃(0) − τ (0)∥1 is the trace distance. To obtain Eq. (A.6.22), the trace distance must be

D(ρ̃(0), τ (0)) ≤ 1. Since the trace distance is convex and monotonic:

D(ρ̃(0), τ (0)) = 1

2
∥ρ̃(0) − τ (0)∥1 ≤ 1

2
∑
n

p(0)n ∥ρ(0)n − ∣E(0)
n ⟩⟨E(0)

n ∣∥1 = 1 −Cmax, (A.6.24)

where the last equality comes from Eq. (A.1.12).
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Proposition A.6.3. Assuming non-ideal (minimal energy UMC) projective measurements for work estimation, the
work dissipated in the driving process can be written as

⟨W ⟩non−id −∆F = kBT [∆S0 +∆Df +D(ρF(t)∣∣Θ�ρB(tf − t)Θ)] , (A.6.25)

where ρF(t) = UΛ(t,0)ρ̃(f)U�
Λ(t,0) is the system state at intermediate time 0 ≤ t ≤ tf in the forward process, ρB(tf − t) =

UΛ̃(tf − t,0)ρ(f)B U
�

Λ̃
(tf − t,0) is the (inverted) state of the system at the same instant of time in the backward process,

and we introduced the correction term

∆Df =D(ρ̃(f)∣∣τ (f)) −D(ρ̃(f)∣∣ρ(f)B ) = Tr[ρ̃(f) (log ρ(f)B − log τ (f))]. (A.6.26)

Proof. We start from Eq. (A.6.16), adding and subtracting the quantity D(ρ̃(f)∣∣ρ(f)B ) to arrive at

⟨W ⟩non−id −∆F = kBT [∆S0 +∆Df +D(ρ̃(f)∣∣ρ(f)B )] . (A.6.27)

Then we use the properties of the quantum relative entropy and the unitary evolution (A.6.14) to write

D(ρ̃(f)∣∣ρ(f)B ) =D(UΛ(tf , t)UΛ(t,0)ρ̃(0)U �
Λ(t,0)U �

Λ(tf , t)∣∣ρ(f)B )
=D(UΛ(t,0)ρ̃(0)U �

Λ(t,0)∣∣U �
Λ(tf , t)ρ(f)B UΛ(tf , t))=D(UΛ(t,0)ρ̃(0)U �

Λ(t,0)∣∣Θ�UΛ̃(tf − t,0)ρ(f)B U
�

Λ̃
(tf − t,0)Θ) =D(ρF(t)∣∣Θ�ρB(tf − t)Θ), (A.6.28)

where we have used the micro-reversibility principle for non-autonomous systems [21] in the last line , i.e., U �
Λ(tf , t) =

Θ�UΛ̃(tf−t,0)Θ, and we have identified the expressions for ρF(t) and ρB(tf−t). Insering Eq. (A.6.28) into Eq. (A.6.27),
we directly obtain Eq. (A.6.25).

Proposition A.6.4. In the case of open quantum systems, Eq. (A.6.25) becomes the inequality

⟨W ⟩non−id −∆F ≥ kBT [∆S0 +∆Df +D(ρF(t)∣∣Θ�ρB(tf − t)Θ)] . (A.6.29)

Proof. Let us consider our system of interest as before along with a thermal bath to which it is coupled. The joint
system can be considered to be closed, and Eq. (A.6.25) hence holds for the joint system, i.e.,

⟨W ⟩non−id −∆F = kBT [∆S0 +∆Df +D(ρ′F(t)∣∣Θ�ρ′B(tf − t)Θ)] ≤ kBT [∆S0 +∆Df +D(ρF(t)∣∣Θ�ρB(tf − t)Θ)] .
(A.6.30)

The left-hand side is the same as before as long as work is performed by implementing the protocol Λ only involving
system degrees of freedom, whereas the primed quantities on the right-hand side correspond to the global state of
system and bath. Notice that assuming that non-ideal measurements are only performed on the system implies that
we recover the same terms ∆S0 and ∆Df . Finally, applying monotonicity of the relative entropy under the partial
trace, i.e., S(ρ∣σ) ≥ S(ρ′∣∣σ′) for any ρ = Trbath[ρ′] and σ = Trbath[σ′], the last inequality is obtained.

Appendix A.7: Two-level system driven by a classical field

To illustrate the formalism presented in this work, let us consider a two-level atom driven out of equilibrium by
a classical field, described by the Hamiltonian H = HS + HF , where HS = −ES

2
σz is the atomic Hamiltonian with

σz = ∣0 ⟩⟨0 ∣ − ∣1 ⟩⟨1 ∣, and the interaction Hamiltonian is HF = −D ⋅EF , where EF = iεF (εFe−iωF te−iφ0 + ε∗FeiωF teiφ0) is a
classical field with real-amplitude εF , polarization vector εF , phase φ0 and angular frequency ωF . The atomic dipole
is D = d(ε∗Sσ+ +εSσ−), with d being the dipole strength, and the vector εS describes the atomic transition polarization
given the energy transition operators σ+ = ∣1⟩⟨0∣ and σ− = ∣0⟩⟨1∣. After applying the Rotating Wave Approximation
(RWA), the Hamiltonian describes a Rabi oscillation with angular frequency Ω̃F , i.e.,

H ≈ Ω̃F

2
σ ⋅ n, (A.7.1)

where σ = (σx, σy, σz) and n = (∆Fuz + ΩFuy)/Ω̃F with corresponding unit vectors (ux,uy,uz), and we use units
where h̵ = 1. The angular frequency is defined in terms of atom and field variables as

Ω̃2
F = ∆2

F +Ω2
F , (A.7.2)
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where ∆F = ES − ωF is the difference between the angular frequency of the field and the energy gap of the atom
(recall that h̵ = 1), and ΩF = 2dεF (εF ⋅ ε∗S) eiφ0 is the classical Rabi frequency of the atom-field interaction. The
transformation generated by the Hamiltonian in Eq. (A.7.1) is a unitary of the form

U(θ) = exp(−iθ
2
σ ⋅ n) = cos(θ

2
) I − i sin(θ

2
)σ ⋅ n, (A.7.3)

for θ = Ω̃F t, and t is the duration of the transformation. For the purpose of illustration, let us restrict our further
analysis to the resonant case, where ∆F ≈ 0. This implies n = uy and hence that the transformation U(θ) is a rotation

around the y axis and Ω̃F = ΩF . Further details about this physical system, and a more complete and general scenario
can be found in Ref. [77].

Let us now consider a process in which the atom is initially prepared in a thermal state at inverse temperature
βS = 1/(kBTS) with respect to the initial system Hamiltonian H(0)

S = −ESσz/2, i.e.,

ρ(0)S = τ (0)S = exp (−βSH(0)
S )

Z(0)S

. (A.7.4)

We then consider the TPM scheme with non-ideal measurements to estimate the work that is performed on the
system by the transformation U(θ), where we assume the measurements to be non-ideal but minimal energy UMC
measurements (see Appendix A.1.c). After the first measurement, the interaction with the field (HF ) is instan-
taneously switched on at t = 0, and the field evolves until time t = tf to an out-of-equilibrium state given by
ρ(f)S (θ) = U(θ)ρ(0)S U(θ)�, with θ = tfΩF . At the time t = tf the interaction with the field (HF ) is instantaneously
switched off, such that H(f)

S =H(0)
S , and the second non-ideal measurement is performed.

The work done by the field by means of U(θ) is the energy difference between the initial and final configurations,

⟨W ⟩Λ = Tr (ρ(f)S (θ)H(f)
S ) −Tr (ρ(0)S H(0)

S ) = −ES
2

Tr (σz(ρ(f)S (θ) − ρ(0)S )) = ES sin2( θ
2
) tanh(βSES

2
). (A.7.5)

However, when we estimate this work using non-ideal measurements, we obtain a different value ⟨W ⟩non−id. For
instance, let us consider minimal energy UMC measurements using a three-qubit pointer that is prepared in a thermal
state

τ(βP ) = (exp (−βPHP )ZP )⊗3

, (A.7.6)

where HP = −EP
2
σz = EP

2
(∣1⟩⟨1∣ − ∣0⟩⟨0∣) is the Hamiltonian of each single-qubit subsystem of the pointer and βP =

1/(kBTP ). As discussed before, the maximum correlation created between system and pointer depends only on the
preparation of the measurement apparatus, which in this example is the sum of the dP /dS = 4 biggest eigenvalues of
the pointer, i.e.,

Cmax = (1 + 3 exp (−βPEP ))Z3
P

. (A.7.7)

Following the approach developed in Sec. A.3, the non-ideal work estimate can be written as

⟨W ⟩non−id = Tr(U(θ) ρ̃(0)S U(θ)�H(f)
S ) −Tr (ρ(0)S H(0)

S ) , (A.7.8)

where the unconditional post-measurement system state is ρ̃(0)S ∶= ∑n p(0)n ρ(0)n . The conditional post-measurement
system states are ρ(0)n = ∑l q(0)ll∣n∣l⟩⟨l∣ and p(0)0 = 1/ZS and p(0)1 = exp (−βSES) /ZS and ZS = 1 + exp (−βSES). The

probability q(0)
ll∣n to find the post-measurement state ρ(0)n in a specific eigenstate ∣ l ⟩ of the system, depends only on the

amount of correlation created between system and pointer, that is,

q(0)
nn∣n = Cmax = 1 + 3 exp (−βPEP )Z3

P

for n = 0,1, (A.7.9)

q(0)
00∣1 = q(0)11∣0 = 1 −Cmax = exp (−3βPEP ) + 3 exp (−2βPEP )Z3

P

. (A.7.10)
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Figure A.2. The non-ideal work estimate ⟨W ⟩non−id and its deviation from the ideal work estimate ⟨W ⟩Λ are shown in (a) and
(b), respectively, as functions of θ = ΩF t ∈ [0,2π], for selected initial temperatures of the pointer, represented by different ratios
of the system and pointer temperature, i.e., βP /βS = 1, and from βP /βS = 150 to 750 in steps of 150. For θ = π/2 and θ = 3π/2
the non-ideal work estimate coincides with the work performed by the process U(θ), independently of the temperature of the
pointer. For the purpose of the this illustration, the initial temperature of the system has been chosen to be room temperature
TS = 300 K for an energy gap in the microwave regime such that βSES ≈ 1/30, and EP = ES/10.

Given the initial state of the atom in Eq. (A.7.4), the unconditional post-measurement system state evolves as

U(θ) ρ̃(0)S U(θ)� = 1ZS (U(θ)ρ(0)n=0U(θ)� + exp (−βSES)U(θ)ρ(0)n=1U(θ)�) . (A.7.11)

Figure A.2 (a) shows ⟨W ⟩non−id as a function of θ = ΩF t for different temperatures of the pointer, where each of the
three pointer qubits is assumed to have an energy gap EP = ES/10. The system is taken to be at room temperature
TS = 300K initially, with an energy gap in the microwave regime, such that βSES ≈ 1/30. The pointer is initially at
the same temperature as the system, but the pointer can be cooled in order to obtain a better precision in the work
estimation as illustrated in Fig. A.2 (b).

For θ = ΩF t = π/2 and θ = 3π/2, the non-ideal work estimate coincides with the work realised by the process U(θ)
independently of the temperature of the pointer. However, for θ = π one notices that the deviation ∣⟨W ⟩Λ − ⟨W ⟩non−id∣
of the work-estimate from its ideal value ⟨W ⟩Λ has the same order of magnitude as ⟨W ⟩Λ for a pointer at temperature
close to room temperature, βP /βS = 1, where we find that ∣⟨W ⟩Λ − ⟨W ⟩non−id∣ /⟨W ⟩Λ = 0.49875. Indeed, for values
of θ close to integer multiples of 2π, the non-ideal estimate can even be arbitrarily far away from the ideal estimate
(which vanishes at these points) in the sense that ∣⟨W ⟩Λ − ⟨W ⟩non−id∣ /⟨W ⟩Λ diverges as θ → 2π. In other words, if
the temperature of the pointer is not taken into account in the work-estimation, the imprecision of the estimate can
be as bigger than the work performed or extracted by the process U(θ). In these cases U(θ) satisfies the condition in
Eq. (A.3.9). At the same time, we note that, since we consider the special case of a qubit system, the minimal energy
UMC measurements we consider are also minimally invasive, meaning that Jarzynski’s relation is satisfied for all θ
and βP /βS.

Let us now consider the energy spent to perform the measurements in the TPM process in the first place, which is
given by ∆ETPM ∶= ∆E(0)

meas +∆E(f)
meas. The contributions from the two respective measurements are

∆E(0)
meas = Tr[(H(0)

S + ∑
i=1,2,3

HPi
)(ρ̃(0)SP − ρ(0)S ⊗ τP )], (A.7.12)

∆E(f)
meas = Tr[(H(f)

S + ∑
i=1,2,3

HPi
)(ρ̃(f)SP − ρ(f)S ⊗ τP )], (A.7.13)

where HPi
is the Hamiltonian for qubit i (for i = 1,2,3) and we have assumed that the pointer is prepared in the same

initial state for both measurements. The states ρ̃(0)SP and ρ̃(f)SP are the joint system-pointer post-measurement states
after the two respective measurements, as in Eq. (A.1.14), for the initial state ρ(0)S at t = 0, and the final state at t = tf
is ρ(f)S = ρS(θ).

In Fig. A.3 we plot ∆ETPM as a function of the initial temperature of the pointer for two distinct durations of
the driving protocol. We notice that there is no discernible dependence of ∆ETPM on the duration of the protocol.
Furthermore, we calculate the energy cost of cooling the pointer within the single-qubit refrigerator paradigm [33, 34].
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Figure A.3. The energy cost ∆ETPM to perform the (non-ideal) TPM measurements is shown in units of ES as a function
of the ratio between the temperatures of the system and pointer βP /βS = TS/TP , where the system is assumed to be at room
temperature TS = 300K initially, for two exemplary durations θ = ΩF t = π/2 and θ = ΩF t = π of the driving protocol. We see
that there is no discernible dependence on θ = ΩF t. More importantly, the inset plot shows the energy cost ∆ECool (in units of
ES) for cooling the pointer from 1/βS to 1/βP ≤ 1/βS as a function of the ratio βP /βS.

For a refrigerator with an energy gap EF, the energy needed to cool the pointer from a temperature 1/βS to the lower
temperature 1/βP is at least

∆ECool = N(EF − 1) ( 1

e−βSEF + 1
− 1

e−βSEP + 1
) , (A.7.14)

where N is the number of qubits to be cooled, and EF = EPβP /βS. In the example we consider N = 3 for each
measurement and EP = ES/10. From Fig. A.2, we see that for θ = π and βP /βS ≥ 750, the deviation of the non-
ideal work-estimate from the ideal one is nearly half as big as ⟨W ⟩Λ, but ∣⟨W ⟩Λ − ⟨W ⟩non−id∣ < 0.01ES. However,
as illustrated in Fig. A.3, the energy cost for cooling the pointer such that βP /βS = 750 is more than two times ES.
In other words, the energy cost of cooling the pointer to the required temperature can outweigh ⟨W ⟩Λ by orders of
magnitude. That is, the cost of estimating the work done by a physical process can by far exceed the amount of work
that is done or consumed during the process.
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Commissions of Trust

Since 2020 Editor of Quantum Views: Copy-editing of perspective articles for the open-
-access peer-reviewed journal Quantum

Since 2016 Deputy President: "Verein zur Förderung des Open Access Publizierens in den
Quantenwissenschaften" (legal body of the journal Quantum)

Since 2017 International Editorial Board Member for J. Phys. Commun. (IoP Publishing)

2016 Invited Perspective Article in New J. Phys. 18, 061001 (2016)

Reviewer

since 2014 Reviewer: 90 verified reviews in 27 different journals (see publons profile) including:
Nat. Phys.; Nat. Commun.; Phys. Rev. (Lett., X, Appl., A, D, & E); npj Quant. Inf.;
Quantum; New. J. Phys.; J. Phys. A; Phys. Lett. A & B; Quant. Inf. Comput.;

2020 IOP Trusted Reviewer Status for ‘exceptionally high level of peer review competency’

2019 PhD Thesis Examiner for Sebastian Kish, University of Queensland, Australia

2020 Programme Committee Member for Q-Turn 2020 (held online due to Covid-19)

2019 Programme Committee Member for YQIS, Sopot Poland, September 2019

2018 Programme Committee Member for YQIS Vienna, September 2018

2018 Programme Committee Member for Q-Turn, Florianópolis, Brazil, November 2018

Invited Talks

2021 Entanglement in Quantum Fields (June 2021, IWH Heidelberg, Germany + online,
organizers S. Floerchinger, M. Gärttner, H. Strobel)

2018 APCTP-KIAS workshop on Motors and Engines (June 25-27, 2018, Korea Institute
for Advanced Study (KIAS), organizers J. Yi, P. Talkner, H. Park, Y. W. Kim)

2016 Workshop Recent Advances in Continuous-variable Quantum Information Theory
(Universitat Autònoma de Barcelona, organizers A. Winter, K. Sabapathy, M. Huber)

2015 Invited talk on the occasion of the celebration of Reinhold Bertlmann’s 70th birthday
(University of Vienna, organized by M. Arndt)

2014 Workshop Quantum Mechanics Tests in Particle, Atomic, Nuclear and Complex Systems
(ECT*, Trento, Italy, organizers B. C. Hiesmayr, C. Curceanu and A. Buchleitner)

2012 9 th Vienna Central European Seminar on Particle Physics and Quantum Field Theory
(University of Vienna, organized by H. Hüffel)

2012 Workshop on Effective Gravity in Fluids and Superfluids (Abdus Salam International
Centre for Theoretical Physics (ICTP), Trieste, organized by S. Weinfurtner)

Organization of Conference & Workshops

2017 Organizer of the December 2017 Nonlocal Seminar at IQOQI Vienna

2016 Summer School Introductory Course on Quantum Information, University of Innsbruck

2012 – 2013 Organizing Committee for the conference RQI-N 2013 at the University of Nottingham

2012 – 2013 Organizer of the workshop "QFGI 2013" at the University of Nottingham

2011 Local Organizing Committee for the ESF PESC Strategic Workshop on "Signatures
of Quantumness in Complex Systems" in Nottingham
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Outreach and Media Coverage

Since 2010 Conference Talks (excl. invited): 22

Conference Posters: 8

Short-term Scientific Visits with Invited Seminar Talks: 21

2021 News coverage of Nature 591, 229–233 (2021) in e.g., standard.at (Austrian news,

online version, in German); phys.org and New Scientist

News coverage of Phys. Rev. X 11, 011046 (2021) in science.orf.at (Austrian news)

News coverage of Nature 589, 220–224 (2021) in e.g., science.orf.at (Austrian news),

standard.at (Austrian newspaper, online version); phys.org; physicsworld.com

News coverage of Quantum 4, 376 (2020) in standard.at (Austrian news, online)

2018 News coverage of Nat. Phys. 14, 1032 (2018) in e.g., science.orf.at (Austrian news),

standard.at (Austrian newspaper, online version) and phys.org

2018 News coverage of Phys. Rev. X 8, 021012 (2018) in e.g., science.orf.at (Austrian news),

standard.at (Austrian newspaper, online version), phys.org, IEEE Spectrum

2017 News coverage of Nat. Commun. 8, 1321 (2017) in e.g., tirol.orf.at (Austrian news),

standard.at (Austrian newspaper, online version), phys.org, IEEE Spectrum

Teaching Experience

Total: 60+ ECTS as lecturer ("Lehrveranstaltungsleiter")

Lecturer at the University of Vienna:

2020 "Quantum Information" (Lecture, VO, 4 ECTS)

2019 – 2020 "Entanglement beyond qubits and the foundation of thermodynamics"

(Seminar, SE, 5 ECTS, jointly w. M. Huber)

2019 SE "High-dimensional QI and thermodynamics" (5 ECTS, jointly w. M. Huber)

2018 – 2019 "Quantum Thermodynamics II" (Lecture + problem class., VO+UE, 2.5 ECTS each,

jointly with M. Huber & M. Lock)

2018 "Quantum Thermodynamics I" (Lecture, VO, 2.5 ECTS, jointly w. M. Huber)

2010 "Exercises for Theoretical Physics II - Quantum Mechanics" (3 ECTS)

Lecturer at the University of Innsbruck:

2016 – 2017 Proseminar (PS) "Theoretical Quantum Information" (5 ECTS)

2016 PS "Quantentheorie" (3 groups, 4 ECTS each)

2015 – 2016 PS "Relativiy" (3 ECTS) & "Theoretical Quantum Information" (5 ECTS)

2015 PS "Quantentheorie" (2 groups, 4 ECTS each)

2014 – 2015 PS "Relativity" (3 ECTS)

Supervision

2020 – 2021 Markus Miethlinger (BSc. student, University of Vienna)

since 2019 Simon Morelli (PhD student, University of Vienna, jointly with M. Huber)

2017 – 2019 Beniamin Jablonski (MSc., University of Vienna, jointly with M. Huber)

2016 Leonhard Czarnetzki (BSc., University of Innsbruck, jointly with H. J. Briegel)
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