Gaussian Operations for Work Extraction and Storage

+ some remarks about the energy cost of measurements

Nicolai Friis

Institute for Quantum Optics and Quantum Information – IQOQI Vienna

APCTP-KIAS Workshop on "Motors and Engines"
June 26, 2018

Work in collaboration with Yelena Guryanova and Marcus Huber (both IQOQI Vienna) as well as Eric Brown (Creative Destruction Lab, Toronto)

Motivation and Introduction

<u>Quantum Thermodynamics</u> **>** thermodynamics in the quantum regime

- Thermodynamic laws in the quantum domain
- Equilibration & thermalization of quantum systems
 - Ouantum Thermodynamics vs
 Statistical Mechanics

 e.g., fluctuation-dissipation theorems: Crooks [*Phys. Rev. E* **60** 2721 (1999)],

 Tasaki [*arXiv: cond-mat/oo09244*], Jarzynski [*Phys. Rev. Lett.* **78** 2690 (1997)],

 Talkner, Lutz, Hänggi [Phys. Rev. E 75, 050102(R) (2007)]
- (Autonomous) Quantum heat engines

Here: <u>Quantum Thermodynamics</u> as a resource theory

- Resource: Work/Energy
- Free states: thermal states $au(eta) = rac{e^{-eta H}}{\mathcal{Z}}$

[arXiv:1505.07835].

Recent review from QI perspective: Goold, Huber, Riera, del Rio,

P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016)

- Free operations: energy conserving unitaries
- Interested in extracting, distributing & storing energy (fundamental limitations?)
- → What can be achieved practically? → e.g., with Gaussian operations

Work extraction

How can work be extracted from a (quantum) system?

Standard paradigm: Unitary on qantum system to lower energy

On the other hand, two thermal states at different temperatures

$$au(eta)\otimes au(eta')$$

not passive

BUT: How complicated are unitaries for arbitrary states? Can such unitaries be realized in practice?

If not, how much energy may be extracted with practical operations?

Gaussian passivity

Class of practically implementable operations:

Gaussian unitaries

(operations that map Gaussian states to Gaussian states)

Recall: Gaussian states fully described by 1st moments $\langle X_i \rangle$ and 2nd moments Γ i.e., covariance matrix $\Gamma_{ij} = \langle X_i X_j + X_j X_i \rangle - 2 \langle X_i \rangle \langle X_j \rangle$ with quadrature operators $X_{2n-1} = (a_n + a_n^\dagger)/\sqrt{2}$ and $X_{2n} = -i(a_n - a_n^\dagger)/\sqrt{2}$

<u>Definition:</u> Any (not necessarily Gaussian) state is called *Gaussian-passive* if its average energy cannot be reduced by Gaussian unitaries.

Gaussian unitaries: affine maps $(S,\xi): \mathbb{X} \mapsto S\mathbb{X} + \xi$

Phase space displacements $D(\xi) = \exp(i \mathbf{X}^T \Omega \xi)$

Symplectic transformations $S \Omega S^T = \Omega$ with $\Omega_{mn} = i \left[\mathbb{X}_m \, , \mathbb{X}_n \, \right]$

Theorem (Gaussian passive states)

Any (not necessarily Gaussian) state of two (noninteracting) bosonic modes with frequencies ω_a and $\omega_b \geq \omega_a$ is Gaussian-passive if and only if its first moments vanish, $\langle \ \mathbb{X} \ \rangle = 0$, and its covariance matrix $\ \Gamma$ is either

- (i) in Williamson normal form $\Gamma=\mathrm{diag}\{\nu_a,\nu_a,\nu_b,\nu_b\}$, with $\nu_a\geq \nu_b$ for $\omega_a<\omega_b$. Or, in the case where $\omega_a=\omega_b$,
- (ii) in standard form $\Gamma=egin{pmatrix} a\mathbb{1} & C \\ C & b\mathbb{1} \end{pmatrix}$, with $C=c\mathbb{1}$.

Sketch of Proof:

- 1) Start with most general combination of 1st and 2nd moments.
- 2) Successively apply Gaussian unitaries to reduce average energy as much as possible.
- 3) Show that the final state has the lowest energy in any Gaussian unitary orbit.

First note: average energy for single mode

$$E(\rho) = \omega \operatorname{Tr}(\rho a^{\dagger} a) = \omega \left(\frac{1}{4} \left[\operatorname{Tr}(\Gamma) - 2 \right] + \frac{1}{2} \|\langle X \rangle \|^2 \right)$$

Step 1 Displacements $D(\xi = -\langle X \rangle)$

Shift first moments of every mode to $\langle \: {
m X} \:
angle = 0$

Step 2 Local symplectic operations

Note: Every two-mode covariance matrix $\ \Gamma$ can be brought to standard form by local symplectic

operations
$$S_{\mathrm{loc}} = S_{\mathrm{loc},a} \oplus S_{\mathrm{loc},b}$$
 , i.e., $S_{\mathrm{loc}} \Gamma S_{\mathrm{loc}}^T = \Gamma_{\mathrm{st}} = \begin{pmatrix} a \, \mathbb{1} & C \\ C & b \, \mathbb{1} \end{pmatrix}$, with $C = \mathrm{diag}\{c_1,c_2\}$.

Loc. sympl. ransformations decompose as
$$S_{\mathrm{loc},i} = R(\theta_i)\,S(r_i)\,R(\phi_i)$$
 $S(r_i) = \begin{pmatrix} e^{-r_i} & 0 \\ 0 & e^{r_i} \end{pmatrix}$ $R(\theta_i) = \begin{pmatrix} \cos\theta_i & \sin\theta_i \\ -\sin\theta_i & \cos\theta_i \end{pmatrix}$ rotations ________________ single-mode squeezing

conversely
$$\Gamma = (S_{\mathrm{loc}}^{-1}) \, \Gamma_{\mathrm{st}} \, (S_{\mathrm{loc}}^{-1})^T$$

$$E(\Gamma) = \frac{\omega_a}{2} \left(a \cosh(2r_a) - 1 \right) + \frac{\omega_b}{2} \left(b \cosh(2r_b) - 1 \right)$$

Bring $\,\Gamma\,$ to standard form using local rotations and single-mode squeezing

Step 3 Two-mode squeezing

Note: after exploiting all local Gaussian unitaries we are left with $\Gamma=egin{pmatrix} a\,\mathbb{1}&C\\ C&b\,\mathbb{1} \end{pmatrix}$, with $C=\mathrm{diag}\{c_1,c_2\}$.

But in general $c_1 \neq c_2$ \Longrightarrow Can reduce energy using two-mode squeezing (*and free local rotations)

$$S_{\rm TMS} = \begin{pmatrix} \cosh(r)\mathbb{1} & \sinh(r)\sigma_z \\ \sinh(r)\sigma_z & \cosh(r)\mathbb{1} \end{pmatrix} \quad \text{with} \quad r = -\frac{1}{2} \operatorname{artanh} \left(\frac{c_1 - c_2}{a + b} \right) \quad \stackrel{*}{\longrightarrow} \quad \widehat{\Gamma} = \begin{pmatrix} \tilde{a} \, \mathbb{1} & c \, \mathbb{1} \\ c \, \mathbb{1} & \tilde{b} \, \mathbb{1} \end{pmatrix}$$

Step 4 "Beam splitting"

If $\omega_a = \omega_b$ done (beam splitting leaves excitation number invariant)

If $\omega_a < \omega_b$ \Longrightarrow can shift excitation to lower-energy mode $S_{\mathrm{BS}}(\theta) = \begin{pmatrix} \cos(\theta) \, \mathbb{1} & \sin(\theta) \, \mathbb{1} \\ \sin(\theta) \, \mathbb{1} & -\cos(\theta) \, \mathbb{1} \end{pmatrix}$

with
$$\theta = \begin{cases} \frac{1}{2} \arctan(\frac{2c}{a-b}) & \text{if } a \ge b \\ \frac{1}{2} \arctan(\frac{2c}{a-b}) + \frac{\pi}{2} & \text{if } a < b \end{cases}$$

Observations and Consequences

Passivity \Longrightarrow Gaussian passivity but Gaussian passivity $\not\Longrightarrow$ Passivity

However, for Gaussian states: Gaussian passivity \implies passivity

<u>Example</u>: two-mode thermal state, different frequencies & temperatures $au(\omega_a, \beta_a) \otimes au(\omega_b, \beta_b)$

Gaussian-passive iff $\frac{\omega_a}{\omega_b} < \frac{T_a}{T_b}$ \Longrightarrow Same condition as for passivity for two thermal states

General initial state

lowest energy achievable with Gaussian unitaries unique

Corresponding Gaussian-passive state not unique

Corollary: Arbitrary state of n bosonic modes Gaussian-passive iff all two-mode marginals are Gaussian-passive

Gap between Passivity and Gaussian Passivity

After reaching Gaussian passivity: How much extractable work is potentially left?

<u>Lemma</u>: 1st & 2nd moments of any Gaussian-passive state are compatible with a (non-Gaussian) **pure** state for which the entire energy is extractable by general unitary transformations.

Theorem: 1st & 2nd moments of any Gaussian-passive state with entropy S_o are compatible with a (non-Gaussian) **mixed** state w. same entropy for which the maximal amount of energy (the energy difference to the thermal state of entropy S_o) is extractable in principle.

Work storage

Transfer energy $\,\Delta E\,$ to quantum battery via unitary $\,U_{\uparrow}$

Unitaries $U_{\uparrow}: au \mapsto
ho \; \exists \;\; ext{but have different properties}$

e.g., variance
$$V(
ho)=(\Delta H_
ho)^2=\langle\;H^2\;
angle_
ho-\langle\;H\;
angle_
ho^2$$

or work fluctuations
$$\ (\Delta W)^2 = \sum\limits_{m,n} p_{m o n} (W_{m o n} - \Delta E)^2$$

with
$$W_{m \to n} = E_n - E_m$$
 & $p_{m \to n} = p_m \, |\, \langle \, n \, |\, U_\uparrow \, |\, m \, \rangle \,|^2$ & $p_m = \langle \, m \, |\, \tau \, |\, m \, \rangle$

&
$$p_m = \langle \, m \, | \, au \, | \, m \,
angle$$

Example: equal spacing $E_{n+1}-E_n=\omega \ \ \forall \ m$ and T=0

Worst case:
$$V(
ho) = \Delta E ig(\omega(d-1) - \Delta Eig)$$

Best case:
$$V(\rho) = \left(\Delta E - \lfloor \Delta E \rfloor\right) \left(\lceil \Delta E \rceil - \Delta E\right)$$

Optimal Precision Charging

Optimal strategy has 2 Steps: Step I:

Initital state
$$\tau(\beta) = \sum_n p_n \, |n\rangle \langle n|$$

ullet Identify level k closest to target energy $\ \epsilon = \epsilon_0 + \Delta \epsilon$

Energy $\epsilon_0 = E(au)/\omega$

ullet Move largest weights $\,p_n\,$ closest to $\,k\,$

 \Longrightarrow Minimal $ilde{V}_\epsilon$ [mean square deviation from ϵ] $\,$ but not the right average: $\, ilde{\epsilon}_{
m I}
eq \epsilon \,$ $\,$ Step II

Optimal Precision Charging

Optimal strategy has 2 Steps: Step II:

- Identify level pairs to adjust energy correctly
- ullet Rotate between levels, starting with minimal $rac{\Delta V_{\epsilon}}{|\Delta ilde{\epsilon}|}$

N. Friis and M. Huber, <u>Quantum 2</u>, 61 (2018) [arXiv:<u>1708.00749</u>]

Optimal Precision Charging

Single-mode batteries

- ullet For T>0: variance may decrease
- For fixed $T \colon V_{\mathrm{opt}}(\Delta E)$ bounded by constants

Multi-mode batteries

- Already local unitaries provide advantage
- Correlations can occur during step II
- Correlations can help but play no central role

N. Friis and M. Huber, <u>Quantum 2</u>, 61 (2018) [arXiv:1708.00749]

Minimal Fluctuations

For integer multiples of ω : $\Delta W = 0$

When $\Delta\epsilon=m\in\mathbb{N}$ \implies Shift by m to the right

For non-integer $\Delta\epsilon$:

- Start shifting at $k = \lceil (\beta \omega)^{-1} \ln(1/\Delta \epsilon) \rceil > 0$
- Fine-tune: rotation between k-1 and k

$$(\Delta W)^{2} = (\Delta E - \lfloor \Delta E \rfloor) (\lceil \Delta E \rceil - \Delta E)$$
$$= V_{\text{opt}}(T = 0)$$

Gaussian Battery Charging

Limitation of Gaussian Unitaries?

Phase space description: Wigner representation $\rho \mapsto \mathcal{W}(x,p) = \frac{1}{(2\pi)^N} \int dy \, e^{-i\,p\,y} \, \langle \, x + \frac{y}{2} \, | \, \rho \, | \, x - \frac{y}{2} \, \rangle$

Observables: $\langle \hat{G} \rangle_{\rho} = \text{Tr}(\hat{G}\rho) = \int dx dp \, \mathcal{W}(x,p) \, g(x,p)$ with $g(x,p) = \int dy \, e^{i \, p \, y} \, \langle x - \frac{y}{2} \, | \, \hat{G} \, | \, x + \frac{y}{2} \, \rangle$

Gaussian states
$$\mathcal{W}(\xi) = \frac{1}{\pi^N \sqrt{\det(\Gamma)}} \exp\left[-(\xi - \overline{\mathbb{X}})^T \Gamma^{-1} (\xi - \overline{\mathbb{X}})\right]$$
 $\overline{\mathbb{X}} = \langle \mathbb{X} \rangle_{\rho}, \quad \xi = (x_1, p_1, \dots, x_N, p_N)^T$

Energy:
$$\frac{E(\rho)}{\omega} = \frac{1}{4} \left[\text{Tr}(\Gamma) - 2 \right] + \frac{1}{2} \|\overline{\mathbb{X}}\|^2$$
 Variance: $(\frac{\Delta \hat{H}}{\omega})^2 = \frac{1}{2} \overline{\mathbb{X}}^T \Gamma \overline{\mathbb{X}} + \frac{1}{8} \left[\text{Tr}(\Gamma^2) - 2 \right]$

Example: pure displacement $D(\alpha)$

$$\frac{\Delta E}{\omega} = \frac{1}{2} \|\overline{\mathbf{X}}\|^2 = \frac{1}{2} |\alpha|^2$$

$$\left(\frac{\Delta \hat{H}}{\omega}\right)^2 = \frac{1}{2} \coth\left(\frac{\beta \omega}{2}\right) \|\overline{\mathbf{X}}\|^2 + \frac{V(\tau)}{\omega^2}$$

as $\Delta E o \infty$: $V(
ho)/\Delta E o {
m const.}$

General Gaussian unitaries

• Optimal: combination of squeezing & displacement

as
$$\Delta E o \infty$$
 : $V(
ho)/\Delta E o 0$

Worst case: pure single-mode squeezing

Optimal and Worst Single-Mode Gaussian strategies

Precision (variance):

- Worst case: pure single-mode squeezing
- Optimal: combination of squeezing & displacement

as
$$\Delta E o \infty$$
 : $V(
ho)/\Delta E o 0$

• Pure displacement: $V(
ho)/\Delta E o {
m const.}$

Fluctuations: • Optimal: combination of squeezing & displacement: as $\Delta E o \infty$: $(\Delta W)^2/\Delta E o 0$

Worst case: in general also combination of squeezing & displacement

N. Friis and M. Huber, <u>Quantum **2**, 61 (2018)</u> [arXiv:<u>1708.00749</u>]

Measurement Cost of Quantum Measurements

Measurements can do work | But what is the energy cost of performing the measurement?

Simple measurement model:
$$ho_S \otimes
ho_P \mapsto U
ho_S \otimes
ho_P U^\dagger = ilde{
ho}_{SP}$$

(unknown) system state

Pointer

Paper: Y. Guryanova, NF, M. Huber [arXiv:1805.11899]

complete set of projectors: Π_i with $\Pi_i \overline{\Pi}_j = \delta_{ij} \overline{\Pi}_i$ for each $\ket{i}_{\scriptscriptstyle S}$

Ideal measurement is:

(i) unbiased
$$\operatorname{Tr}igl[\mathbb{I}\otimes\Pi_{i} ilde{
ho}_{\scriptscriptstyle SP}igr]=\operatorname{Tr}igl[\ket{i}\!igl\langle i\ket_{\scriptscriptstyle S}
ho_{\scriptscriptstyle S}igr]=
ho_{ii}$$
 $\forall i$

(ii) faithful
$$C(ilde{
ho}_{\scriptscriptstyle SP}) := \sum_i {
m Tr} ig[\,|\,i\,
angle\!\langle\,i\,|\otimes\Pi_i\,\, ilde{
ho}_{\scriptscriptstyle SP}\,ig] \,=\, 1$$

(ii) non-invasive
$$\operatorname{Tr}ig[\ket{i}\!ig\langle i\ket_{_{\!S}} ilde{
ho}_{_{\!S}}ig]=\operatorname{Tr}ig[\ket{i}\!ig\langle i\ket_{_{\!S}}
ho_{_{\!S}}ig]=
ho_{ii}\quadorall\ i.$$

But: (ii) cannot be (exactly) satisfied if ρ_P has full rank (in particular, for finite-resource preparation)

Non-ideal measurement satisyfing (i) possible: \blacksquare Energy cost for high values of $C(\tilde{\rho}_{SP})$

Summary and Remarks

- Work extraction using Gaussian operations
 Gaussian passivity
- Characterization of GP states using 1st & 2nd moments only
 - provides protocol for Gaussian work extraction
- Non-Gaussian states: extractable work may be left (max. gap)
- Precision & Fluctuations for charging

 optimal general protocols
- Gaussian Operations

 non-optimal but good performance
- (Some) proofs rely on ∞ -dim Hilbert space
- Finite energy cost of non-ideal quantum measurements

Papers: E. G. Brown, N. Friis, and M. Huber, <u>New J. Phys. **18**, 113028 (2016)</u> [arXiv:<u>1608.04977</u>].

N. Friis and M. Huber, <u>Quantum 2, 61 (2018)</u> [arXiv:<u>1708.00749</u>]

Y. Guryanova, N. Friis, and M. Huber [arXiv:1805.11899]

Thank you for your attention