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Quantum Thermodynamics thermodynamics in the quantum regime

Thermodynamic laws in the quantum domain

Equilibration & thermalization of quantum systems

Quantum Thermodynamics vs
Statistical Mechanics

e.g., fluctuation-dissipation theorems: Crooks [Phys. Rev. E 60 2721 (1999)], 
Tasaki [arXiv: cond-mat/0009244], Jarzynski [Phys. Rev. Lett. 78 2690 (1997)], 
Talkner, Lutz, Hänggi [Phys. Rev. E 75, 050102(R) (2007)]

(Autonomous) Quantum heat engines

Here: Quantum Thermodynamics
as a resource theory

Resource: Work/Energy

Free states: thermal states

Interested in extracting, distributing & storing energy

What can be achieved practically?

(fundamental limitations?) 

e.g., with Gaussian operations

Recent review from QI perspective: Goold, Huber, Riera, del Rio, 
P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016) 
[arXiv:1505.07835].

Free operations: energy conserving unitaries



Quantum states useful only if energy CAN be lowered by unitaries

How can work be extracted from a (quantum) system?

Standard paradigm: Unitary on qantum system to lower energy

Store energy in battery to conserve energy

Otherwise states are called passive, e.g., thermal state

On the other hand, two thermal states at different temperatures not passive

BUT: How complicated are unitaries for arbitrary states? Can such unitaries be realized in practice?

If not, how much energy may be extracted with practical operations?
Pusz & Woronowicz, 
Commun. Math. Phys. 58, 273 (1978)



Gaussian unitaries: affine maps
Phase space displacements

Class of practically implementable operations: Gaussian unitaries

(operations that map Gaussian states to Gaussian states)

Recall: Gaussian states fully described by and 2nd moments

i.e., covariance matrix with

quadrature operators and

Symplectic transformations

Definition: Any (not necessarily Gaussian) state is called Gaussian-passive

if its average energy cannot be reduced by Gaussian unitaries.

with

1st moments



with frequencies         and Gaussian-passive

Sketch of Proof: 1) Start with most general combination of 1st and 2nd moments.

2) Successively apply Gaussian unitaries to reduce average energy as much as possible.

3) Show that the final state has the lowest energy in any Gaussian unitary orbit.



First note: average energy for single mode

Shift first moments of every mode to



Note: Every two-mode covariance matrix can be brought to standard form by local symplectic

operations , i.e., , with .

Loc. sympl. ransformations decompose as

single-mode squeezing
rotations

conversely

Bring         to standard form using local rotations and single-mode squeezing



Note: after exploiting all local Gaussian unitaries we are left with  , with .

But in general Can reduce energy using two-mode squeezing

with

(*and free local rotations)

*



If done (beam splitting leaves excitation number invariant)

If can shift excitation to lower-energy mode

with

with



Passivity               Gaussian passivity but Gaussian passivity Passivity

General initial state lowest energy achievable with Gaussian unitaries unique

Corresponding Gaussian-passive state not unique

Corollary: Arbitrary state of n bosonic modes Gaussian-passive 

iff all two-mode marginals are Gaussian-passive

However, for Gaussian states: Gaussian passivity                  passivity

Example:   two-mode thermal state, different frequencies & temperatures

with &

Gaussian-passive iff Same condition as for passivity for two thermal states 



After reaching Gaussian passivity: How much extractable work is potentially left?

Lemma:  1st & 2nd moments of any Gaussian-passive state are compatible with

for which the entire energy is extractablea (non-Gaussian) pure state  

by general unitary transformations.

Theorem:  1st & 2nd moments of any Gaussian-passive state

are compatible with a (non-Gaussian) mixed state w. same entropy  

for which the maximal amount of energy (the energy difference to

the thermal state of entropy        )    is extractable in principle.

For proofs please see E. G. Brown, N. Friis, and M. Huber, New J. Phys. 18, 113028 (2016) [arXiv:1608.04977].

with entropy

https://doi.org/10.1088/1367-2630/18/11/113028
https://arxiv.org/abs/1608.04977


Transfer energy to quantum battery via unitary

Unitaries but have different properties

e.g., variance

or work fluctuations

with &

Example: equal spacing

Worst case:  

and

Best case:  

&



N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]

Optimal strategy has 2 Steps: Step I:

Identify level closest to target energy

Move largest weights closest to

Step I

Minimal but not the right average: Step II[mean square deviation from ]

Initital state

Energy

https://quantum-journal.org/papers/q-2018-04-23-61/
https://arxiv.org/abs/1708.00749v2


N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]

Optimal strategy has 2 Steps: Step II:

Identify level pairs to adjust energy correctly

Rotate between levels, 

Step II

Stop when reaching

starting with minimal

https://quantum-journal.org/papers/q-2018-04-23-61/
https://arxiv.org/abs/1708.00749v2


N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]

For :   variance may decrease

For fixed :                           bounded by
constants

Correlations can occur during step II

Already local unitaries provide advantage

optimal

Single-mode batteries

Multi-mode batteries

Correlations can help but play no central role

https://quantum-journal.org/papers/q-2018-04-23-61/
https://arxiv.org/abs/1708.00749v2


For integer multiples of       : When Shift by to the right

For non-integer           :

Start shifting at 

Fine-tune:  rotation between and



Phase space description:

Example: pure displacement

Limitation of Gaussian Unitaries?

Wigner representation

Observables: with

Gaussian states

Energy: Variance:

General Gaussian unitaries

Optimal: combination of squeezing & displacement

as : 

Worst case: pure single-mode squeezingas : 



Gaussian 
optimum

Precision (variance): 

Squeezing

Displacements
Worst case: pure single-mode squeezing

Optimal: combination of squeezing & displacement

as : 

Pure displacement:

Fluctuations:   

Worst case: in general also combination of squeezing & displacement

Optimal: combination of squeezing & displacement: as : 

N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]

https://quantum-journal.org/papers/q-2018-04-23-61/
https://arxiv.org/abs/1708.00749v2


Measurements can do work But what is the energy cost of performing the measurement?

Simple measurement model: 

Ideal measurement is: (i) unbiased

complete set of projectors:

(unknown) system state Pointer 

with for each

(ii) faithful

(ii) non-invasive

But:   (ii) cannot be (exactly) satisfied if has full rank (in particular, for finite-resource preparation) 

Non-ideal measurement satisyfing (i) possible: Energy cost for high values of 

Paper: Y. Guryanova, NF, M. Huber 
[arXiv:1805.11899]

https://arxiv.org/abs/1805.11899


Papers: E. G. Brown, N. Friis, and M. Huber, New J. Phys. 18, 113028 (2016) [arXiv:1608.04977].
N. Friis and M. Huber, Quantum 2, 61 (2018) [arXiv:1708.00749]
Y. Guryanova, N. Friis, and M. Huber [arXiv:1805.11899]

Thank you for your attention

https://doi.org/10.1088/1367-2630/18/11/113028
https://arxiv.org/abs/1608.04977
https://quantum-journal.org/papers/q-2018-04-23-61/
https://arxiv.org/abs/1708.00749v2
https://arxiv.org/abs/1805.11899

