I@I

The Thermodynamics of Creating Correlations

Limitations and Optimal Protocols

Group Retreat 2014

Maria Waldrast, September $28^{\text {th }}$ - October $1^{\text {st }}, 2014$

Nicolai Friis

Institute for Quantum Optics and Quantum Information - Innsbruck work in collaboration with David E. Bruschi (Jerusalem), Martí Perarnau-Llobet, Karen V. Hovhannisyan, and Marcus Huber (Barcelona)

Optimal creation of total correlations
Optimal creation of entanglement

Motivation - Quantum Thermodynamics

Some approaches to thermodynamics in the quantum domain

Motivation - Quantum Thermodynamics

Some approaches to thermodynamics in the quantum domain

- Landauer's principle: minimum energy for bit erasure (see, e.g., Reeb \& Wolf, arXiv:1306.4352; Esposito \& Van den Broeck, Europhys. Lett. 95, 40004 (2011) [arXiv:1104.5165])

Motivation - Quantum Thermodynamics

Some approaches to thermodynamics in the quantum domain

- Landauer's principle: minimum energy for bit erasure (see, e.g., Reeb \& Wolf, arXiv:1306.4352; Esposito \& Van den Broeck, Europhys. Lett. 95, 40004 (2011) [arXiv:1104.5165])
- Role of quantum effects in thermal machines

Scarani, et al., Phys. Rev. Lett. 88, 097905 (2002) [arXiv:quant-ph/0110088];
Alicki \& Fannes, Phys. Rev. E 87, 042123 (2013) [arXiv:1211.1209];
Correa et al., Phys. Rev. E 87, 042131 (2013) [arXiv:1212.4501];
Brunner et al., Phys. Rev. E 89, 032115 (2014) [arXiv:1305.6009];
Gallego, Riera, \& Eisert, arXiv:1310.8349;

- Thermodynamic laws in quantum regime (see, e.g., Brandão et al... arXiv:1305.5278)
thermodynamics
quantum information

Motivation - Quantum Thermodynamics

Some approaches to thermodynamics in the quantum domain

- Landauer's principle: minimum energy for bit erasure (see, e.g., Reeb \& Wolf, arXiv:1306.4352; Esposito \& Van den Broeck, Europhys. Lett. 95, 40004 (2011) [arXiv:1104.5165])
- Role of quantum effects in thermal machines

Scarani, et al., Phys. Rev. Lett. 88, 097905 (2002) [arXiv:quant-ph/0110088];
Alicki \& Fannes, Phys. Rev. E 87, 042123 (2013) [arXiv:1211.1209];
Correa et al., Phys. Rev. E 87, 042131 (2013) [arXiv:1212.4501];
Brunner et al., Phys. Rev. E 89, 032115 (2014) [arXiv:1305.6009];
Gallego, Riera, \& Eisert, arXiv:1310.8349;

- Thermodynamic laws in quantum regime (see, e.g., Brandão et al., arXiv:1305.5278)

Motivation - Quantum Thermodynamics

Some approaches to thermodynamics in the quantum domain

- Landauer's principle: minimum energy for bit erasure (see, e.g., Reeb \& Wolf, arXiv:1306.4352; Esposito \& Van den Broeck, Europhys. Lett. 95, 40004 (2011) [arXiv:1104.5165])
- Role of quantum effects in thermal machines

Scarani, et al., Phys. Rev. Lett. 88, 097905 (2002) [arXiv:quant-ph/0110088];
Alicki \& Fannes, Phys. Rev. E 87, 042123 (2013) [arXiv:1211.1209];
Correa et al., Phys. Rev. E 87, 042131 (2013) [arXiv:1212.4501];
Brunner et al., Phys. Rev. E 89, 032115 (2014) [arXiv:1305.6009];
Gallego, Riera, \& Eisert, arXiv:1310.8349;

- Thermodynamic laws in quantum regime (see, e.g., Brandão et al., arXiv:1305.5278)

Connection between resource theories?

thermodynamics \longleftrightarrow quantum information

Outline

We ask ${ }^{1}$

How strongly can one correlate a system at initial temperature T if the work W is supplied?

- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)
- Bound for overall correlations measured by the mutual information
- Ontimal nrotocol saturating this hound

Generating entanglement - bottom-up approach:

- Optimal entanglement generation between two bosonic modes
- Optimal entanglement generation between two fermionic modes

Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)

[^0]
Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Generating total correlations:

- Bound for overall correlations measured by the mutual information
- Optimal protocol saturating this bound

Generating entanglement - bottom-up approach:

- Ontimal entanolement generation between two bosonic modes
- Optimal entanglement generation between two fermionic modes
${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Outline of our contribution ${ }^{1}$

Generating total correlations:

[^1]
Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Outline of our contribution ${ }^{1}$

Generating total correlations:

- Bound for overall correlations measured by the mutual information

Generating entanglement - bottom-up approach:
${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].
Nicolai Friis (IQOQI Innsbruck) The thermodynamics of creating correlations

Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Outline of our contribution ${ }^{1}$

Generating total correlations:

- Bound for overall correlations measured by the mutual information
- Optimal protocol saturating this bound

Generating entanglement - bottom-up approach
${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].
Nicolai Friis (IQOQI Innsbruck) The thermodynamics of creating correlations

Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Outline of our contribution ${ }^{1}$

Generating total correlations:

- Bound for overall correlations measured by the mutual information
- Optimal protocol saturating this bound

Generating entanglement - bottom-up approach:

[^2]
Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Outline of our contribution ${ }^{1}$

Generating total correlations:

- Bound for overall correlations measured by the mutual information
- Optimal protocol saturating this bound

Generating entanglement - bottom-up approach:

- Optimal entanglement generation between two bosonic modes

[^3]
Outline

We ask ${ }^{1}$
How strongly can one correlate a system at initial temperature T if the work W is supplied?

Previous work in this direction

- All correlations imply extractable work (Perarnau-Llobet et al.,arXiv:1407.7765)
- Cost of correlating isolated systems of qubits (Huber et al., arXiv:1404.2169)

Outline of our contribution ${ }^{1}$

Generating total correlations:

- Bound for overall correlations measured by the mutual information
- Optimal protocol saturating this bound

Generating entanglement - bottom-up approach:

- Optimal entanglement generation between two bosonic modes
- Optimal entanglement generation between two fermionic modes

[^4]
Framework

$$
\text { System } S \text { \& Bath } B: \quad \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B}
$$

Framework

$$
\begin{array}{cc}
\text { System } S \text { \& Bath } B: & \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B} \\
\text { non-interacting } & H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B}
\end{array}
$$

Framework

$$
\begin{array}{cc}
\text { System } S \text { \& Bath } B: & \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B} \\
\text { non-interacting } & H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B} \\
\text { thermal state } & \tau_{S B}(\beta)=\mathcal{Z}^{-1}(\beta) e^{-\beta H_{S B}}
\end{array}
$$

initial state uncorrelated

Cost of moving the system out of thermal equilibrium
Eran anauny diffarance

Notation: $\mathcal{Z} \ldots$ partition function, $\beta=1 / T$, units: $\hbar=k_{\mathrm{B}}=1$

Framework

System S \& Bath B:

$$
\mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B}
$$

non-interacting

$$
H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B}
$$

thermal state
initial state uncorrelated

$$
\tau_{S B}(\beta)=\mathcal{Z}^{-1}(\beta) e^{-\beta H_{S B}}
$$

$$
\tau_{S B}=\tau_{S_{1}} \otimes \tau_{S_{2}} \otimes \tau_{B}
$$

Notation: $\mathcal{Z} \ldots$ partition function, $\beta=1 / T$, units: $\hbar=k_{\mathrm{B}}=1$

Framework

$$
\begin{array}{cc}
\text { System } S \text { \& Bath } B: & \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B} \\
\text { non-interacting } & H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B} \\
\text { thermal state } & \tau_{S B}(\beta)=\mathcal{Z}^{-1}(\beta) e^{-\beta H_{S B}} \\
\text { initial state uncorrelated } & \tau_{S B}=\tau_{S_{1}} \otimes \tau_{S_{2}} \otimes \tau_{B}
\end{array}
$$

Cost of moving the system out of thermal equilibrium

Free energy difference: $\quad \Delta F(\tau(\beta) \rightarrow \rho)=F(\rho)-F(\tau(\beta)) \geq 0$

Notation: $\mathcal{Z} \ldots$ partition function, $\beta=1 / T$, units: $\hbar=k_{\mathrm{B}}=1$

Framework

$$
\begin{array}{cc}
\text { System } S \text { \& Bath } B: & \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B} \\
\text { non-interacting } & H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B} \\
\text { thermal state } & \tau_{S B}(\beta)=\mathcal{Z}^{-1}(\beta) e^{-\beta H_{S B}} \\
\text { initial state uncorrelated } & \tau_{S B}=\tau_{S_{1}} \otimes \tau_{S_{2}} \otimes \tau_{B}
\end{array}
$$

Cost of moving the system out of thermal equilibrium

Free energy difference: $\quad \Delta F(\tau(\beta) \rightarrow \rho)=F(\rho)-F(\tau(\beta)) \geq 0$
where $\quad F(\rho)=E(\rho)-T S(\rho)$

Framework

$$
\begin{array}{cc}
\text { System } S \text { \& Bath } B: & \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B} \\
\text { non-interacting } & H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B} \\
\text { thermal state } & \tau_{S B}(\beta)=\mathcal{Z}^{-1}(\beta) e^{-\beta H_{S B}} \\
\text { initial state uncorrelated } & \tau_{S B}=\tau_{S_{1}} \otimes \tau_{S_{2}} \otimes \tau_{B}
\end{array}
$$

Cost of moving the system out of thermal equilibrium

Free energy difference: $\quad \Delta F(\tau(\beta) \rightarrow \rho)=F(\rho)-F(\tau(\beta)) \geq 0$
where

$$
\begin{array}{cc}
F(\rho)= & E(\rho)-T S(\rho) \\
& \uparrow \\
\text { energy } & \nwarrow \\
\text { entropy }
\end{array}
$$

Applying unitaries U_{S} or $U_{S B}$ to correlate system \Leftrightarrow energy cost

Notation: $\mathcal{Z} \ldots$ partition function, $\beta=1 / T$, units: $\hbar=k_{\mathrm{B}}=1$

Framework

$$
\begin{array}{cc}
\text { System } S \text { \& Bath } B: & \mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \mathcal{H}_{B} \\
\text { non-interacting } & H_{S B}=H_{S_{1}}+H_{S_{2}}+H_{B} \\
\text { thermal state } & \tau_{S B}(\beta)=\mathcal{Z}^{-1}(\beta) e^{-\beta H_{S B}}
\end{array}
$$

initial state uncorrelated

$$
\tau_{S B}=\tau_{S_{1}} \otimes \tau_{S_{2}} \otimes \tau_{B}
$$

Cost of moving the system out of thermal equilibrium

Free energy difference: $\quad \Delta F(\tau(\beta) \rightarrow \rho)=F(\rho)-F(\tau(\beta)) \geq 0$
where

$$
\begin{array}{cc}
\underset{\sim}{\uparrow}(\rho)= & T(\rho) \\
\text { energy } & \nwarrow \\
\text { entropy }
\end{array}
$$

Applying unitaries U_{S} or $U_{S B}$ to correlate system \Leftrightarrow energy cost

Notation: \mathcal{Z}. . partition function, $\beta=1 / T$, units: $\hbar=k_{\mathrm{B}}=1$

Optimal creation of total correlations

Bound on optimal correlations

Measure of correlation

$$
\text { Mutual information: } \quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)
$$

Bound on optimal correlations

Measure of correlation

$$
\text { Mutual information: } \quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)
$$

Energy cost for global unitary $U_{S B}$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
W=\Delta E_{S}+\Delta E_{B}
$$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
\begin{aligned}
W & =\Delta E_{S}+\Delta E_{B} \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S}\right)-S\left(\tau_{B}\right)\right]
\end{aligned}
$$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
\begin{aligned}
W & =\Delta E_{S}+\Delta E_{B} \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S}\right)-S\left(\tau_{B}\right)\right] \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S B}\right)\right]
\end{aligned}
$$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
\begin{aligned}
W & =\Delta E_{S}+\Delta E_{B} \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S}\right)-S\left(\tau_{B}\right)\right] \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S B}\right)\right] \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\rho_{S B}\right)\right]
\end{aligned}
$$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
\begin{aligned}
W & =\Delta E_{S}+\Delta E_{B} \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S}\right)-S\left(\tau_{B}\right)\right] \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\tau_{S B}\right)\right] \\
& =\Delta F_{S}+\Delta F_{B}+T\left[S\left(\rho_{S}\right)+S\left(\rho_{B}\right)-S\left(\rho_{S B}\right)\right] \\
& =\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}
\end{aligned}
$$

Bound on optimal correlations

Measure of correlation

$$
\text { Mutual information: } \quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)
$$

Energy cost for global unitary $U_{S B}$

$$
W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}
$$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}
$$

A similar computation gives: $\Delta F_{S}=\Delta F_{S_{1}}+\Delta F_{S_{2}}+T \mathcal{I}_{S_{1} S_{2}}$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$
$W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}$
A similar computation gives: $\Delta F_{S}=\Delta F_{S_{1}}+\Delta F_{S_{2}}+T \mathcal{I}_{S_{1} S_{2}}$
For any thermal state: $\Delta F=T S(\rho \| \tau(\beta))$
Hence
Maximal correlation for fixed temperature and work

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}
$$

A similar computation gives: $\Delta F_{S}=\Delta F_{S_{1}}+\Delta F_{S_{2}}+T \mathcal{I}_{S_{1} S_{2}}$
For any thermal state: $\Delta F=T S(\rho \| \tau(\beta))$
Hence: $\beta W=S\left(\rho_{S_{1}} \| \tau_{S_{1}}\right)+S\left(\rho_{S_{2}} \| \tau_{S_{2}}\right)+S\left(\rho_{B} \| \tau_{B}\right)+\mathcal{I}_{S_{1} S_{2}}+\mathcal{I}_{S B}$

Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}
$$

A similar computation gives: $\Delta F_{S}=\Delta F_{S_{1}}+\Delta F_{S_{2}}+T \mathcal{I}_{S_{1} S_{2}}$
For any thermal state: $\Delta F=T S(\rho \| \tau(\beta))$
Hence: $\beta W=S\left(\rho_{S_{1}} \| \tau_{S_{1}}\right)+S\left(\rho_{S_{2}} \| \tau_{S_{2}}\right)+S\left(\rho_{B} \| \tau_{B}\right)+\mathcal{I}_{S_{1} S_{2}}+\mathcal{I}_{S B}$

Maximal correlation for fixed temperature and work

$$
\mathcal{I}_{s_{1} s_{2}} \leq \beta W
$$

[^5]
Bound on optimal correlations

Measure of correlation

Mutual information: $\quad \mathcal{I}_{S_{1} S_{2}}\left(\rho_{S}\right)=S\left(\rho_{S_{1}}\right)+S\left(\rho_{S_{2}}\right)-S\left(\rho_{S}\right)$
Energy cost for global unitary $U_{S B}$

$$
W=\Delta F_{S}+\Delta F_{B}+T \mathcal{I}_{S B}
$$

A similar computation gives: $\Delta F_{S}=\Delta F_{S_{1}}+\Delta F_{S_{2}}+T \mathcal{I}_{S_{1} S_{2}}$
For any thermal state: $\Delta F=T S(\rho \| \tau(\beta))$
Hence: $\beta W=S\left(\rho_{S_{1}} \| \tau_{S_{1}}\right)+S\left(\rho_{S_{2}} \| \tau_{S_{2}}\right)+S\left(\rho_{B} \| \tau_{B}\right)+\mathcal{I}_{S_{1} S_{2}}+\mathcal{I}_{S B}$

Maximal correlation for fixed temperature and work

$$
\mathcal{I}_{S_{1} S_{2}} \leq \beta W
$$

For arbitrarily large bath $\Delta F_{B}=0, \mathcal{I}_{S B}=0$ achievable (see Åberg, Nat. Commun. 4, 1925 (2013) [arXiv:1110.6121])

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

(I) Cooling: Lower temperature of S from T to $T_{\mathrm{I}} \leq T$

Correlating: Isolate system from bath
Correlate via unitary U_{S} such that S_{1} and S_{2} are locally thermal at
temperature

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

(1) Cooling: Lower temperature of S from T to $T_{\mathrm{I}} \leq T$

Minimal energy cost

$$
W_{\mathrm{I}}=\Delta F_{S}=F\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-F\left(\tau_{S}(\beta)\right)
$$

Correlating:
Isolate system from bath
Correlate via unitary L
temperature

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

(I) Cooling: Lower temperature of S from T to $T_{\mathrm{I}} \leq T$

Minimal energy cost

$$
W_{\mathrm{I}}=\Delta F_{S}=F\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-F\left(\tau_{S}(\beta)\right)
$$

(II) Correlating: Isolate system from bath

Correlate via unitary U_{S} such that S_{1} and S_{2} are locally thermal at temperature $T_{\text {II }} \geq T_{\text {I }}$,

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

(I) Cooling: Lower temperature of S from T to $T_{\mathrm{I}} \leq T$

Minimal energy cost

$$
W_{\mathrm{I}}=\Delta F_{S}=F\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-F\left(\tau_{S}(\beta)\right)
$$

(II) Correlating: Isolate system from bath

Correlate via unitary U_{S} such that S_{1} and S_{2} are locally thermal at temperature $T_{\text {II }} \geq T_{\mathrm{I}}$,
\Rightarrow ensures correlation at minimal energy cost (see Huber et al., arXiv:1404.2169)

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

(I) Cooling: Lower temperature of S from T to $T_{\mathrm{I}} \leq T$

Minimal energy cost

$$
W_{\mathrm{I}}=\Delta F_{S}=F\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-F\left(\tau_{S}(\beta)\right)
$$

(II) Correlating: Isolate system from bath

Correlate via unitary U_{S} such that S_{1} and S_{2} are locally thermal at temperature $T_{\text {II }} \geq T_{\mathrm{I}}$,
\Rightarrow ensures correlation at minimal energy cost (see Huber et al., arXiv:1404.2169)
Energy cost $\quad W_{\text {II }}=E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)-E\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
\begin{aligned}
= & E\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right] \\
& +E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)
\end{aligned}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right] \\
& +E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)
\end{aligned}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
\end{aligned}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
=E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
$$

On the other hand

$$
\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S_{1}}\left(\beta_{\mathrm{II}}\right)\right)+S\left(\tau_{S_{2}}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\rho_{S}^{\mathrm{II}}\right)
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
=E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
$$

On the other hand

$$
\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S_{1}}\left(\beta_{\mathrm{II}}\right)\right)+S\left(\tau_{S_{2}}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W \quad=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
=E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
$$

On the other hand

$$
\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S_{1}}\left(\beta_{\text {II }}\right)\right)+S\left(\tau_{S_{2}}\left(\beta_{\text {II }}\right)\right)-S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
=E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
$$

On the other hand

$$
\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
=E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
$$

On the other hand

$$
S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)=S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-\mathcal{I}_{S_{1} S_{2}}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:
$W \quad=W_{\mathrm{I}}+W_{\mathrm{II}}$

$$
=E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]
$$

On the other hand

$$
S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)=S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-\mathcal{I}_{S_{1} S_{2}}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]+T \mathcal{I}_{S_{1} S_{2}}
\end{aligned}
$$

On the other hand

$$
S\left(\tau_{S}\left(\beta_{\mathrm{I}}\right)\right)=S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-\mathcal{I}_{S_{1} S_{2}}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]+T \mathcal{I}_{S_{1} S_{2}}
\end{aligned}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]+T \mathcal{I}_{S_{1} S_{2}} \\
& =\Delta F_{S}\left(\beta \rightarrow \beta_{\mathrm{II}}\right)+T \mathcal{I}_{S_{1} S_{2}}
\end{aligned}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]+T \mathcal{I}_{S_{1} S_{2}} \\
& =T S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right) \| \tau_{S}(\beta)\right)+T \mathcal{I}_{S_{1} S_{2}}
\end{aligned}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Overall work cost:

$$
\begin{aligned}
W & =W_{\mathrm{I}}+W_{\mathrm{II}} \\
& =E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-E\left(\tau_{S}(\beta)\right)-T\left[S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)-S\left(\tau_{S}(\beta)\right)\right]+T \mathcal{I}_{S_{1} S_{2}} \\
& =T S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right) \| \tau_{S}(\beta)\right)+T \mathcal{I}_{S_{1} S_{2}}
\end{aligned}
$$

Optimal conversion of energy into correlations when

$$
\beta_{\mathrm{II}}=\beta, \quad T_{\mathrm{II}}=T \quad \Rightarrow \quad S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right) \| \tau_{S}(\beta)\right)=0
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes

Low energy
High energy: $T_{\Pi}>T, \quad T_{I}=0$, ground state reached in step I

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes
Low energy: $\quad T_{\text {II }}=T, \quad T_{\mathrm{I}}>0$,

[^6]
Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes
Low energy: $\quad T_{\text {II }}=T, \quad T_{\mathrm{I}}>0$,
High energy: $\quad T_{\text {II }}>T, \quad T_{\mathrm{I}}=0$, ground state reached in step I

Threshold energy:
free energy difference to ground state

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes
Low energy: $\quad T_{\text {II }}=T, \quad T_{\mathrm{I}}>0$,
High energy: $T_{\mathrm{II}}>T, \quad T_{\mathrm{I}}=0$, ground state reached in step I
Threshold energy: $W=T S\left(\tau_{S}(\beta)\right)=-F\left(\tau_{S}(\beta)\right)+E\left(\tau_{S}(\beta)\right)$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes
Low energy: $\quad T_{\text {II }}=T, \quad T_{\mathrm{I}}>0$,
High energy: $\quad T_{\text {II }}>T, \quad T_{\mathrm{I}}=0$, ground state reached in step I
Threshold energy: $W=T S\left(\tau_{S}(\beta)\right)=-F\left(\tau_{S}(\beta)\right)+E\left(\tau_{S}(\beta)\right)$

$$
W_{\mathrm{I}}=-F\left(\tau_{S}(\beta)\right) \geq 0 \quad \text { free energy difference to ground state }
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes
Low energy: $\quad T_{\text {II }}=T, \quad T_{\mathrm{I}}>0$,
High energy: $T_{\mathrm{II}}>T, \quad T_{\mathrm{I}}=0$, ground state reached in step I
Threshold energy: $W=T S\left(\tau_{S}(\beta)\right)=-F\left(\tau_{S}(\beta)\right)+E\left(\tau_{S}(\beta)\right)$

$$
\begin{gathered}
W_{\mathrm{I}}=-F\left(\tau_{S}(\beta)\right) \geq 0 \quad \text { free energy difference to ground state } \\
W_{\mathrm{II}}=E\left(\tau_{S}(\beta)\right) \quad \text { supplies energy for } \beta_{\mathrm{II}}=\beta
\end{gathered}
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes

High energy:
β_{Π} implicitly given by $E\left(\tau_{S}\left(\beta_{\Pi}\right)\right)=W+F\left(\tau_{S}(\beta)\right)$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes

$$
\text { Low energy: } \quad \mathcal{I}_{S_{1} S_{2}}=\beta W \text { if } W \leq \operatorname{TS}\left(\tau_{S}(\beta)\right) \text {, }
$$

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes

Low energy: $\quad \mathcal{I}_{S_{1} S_{2}}=\beta W$ if $W \leq \operatorname{TS}\left(\tau_{S}(\beta)\right)$,
High energy: $\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)$ if $\quad W>\operatorname{TS} S\left(\tau_{S}(\beta)\right)$,

Optimal protocol for the generation of mutual information

Without loss of generality we may split the protocol into two steps

Optimal protocol: distinguish two regimes

Low energy: $\quad \mathcal{I}_{S_{1} S_{2}}=\beta W$ if $W \leq \operatorname{TS}\left(\tau_{S}(\beta)\right)$,
High energy: $\mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)$ if $\quad W>\operatorname{TS}\left(\tau_{S}(\beta)\right)$, $\beta_{\text {II }}$ implicitly given by $E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right)=W+F\left(\tau_{S}(\beta)\right)$

High energy regime: $W>T S\left(\tau_{s}(\beta)\right)$

2 fermionic modes at frequency ω

Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number
Pauli exclusion principle: $0 \leq N_{S_{i}} \leq 1$ for any state

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 fermionic modes at frequency ω

Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}+1\right)^{-1}$
Pauli exclusion principle: $0 \leq N_{S} \leq 1$ for any state

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=$

High energy regime: $W>T S\left(\tau_{s}(\beta)\right)$

2 fermionic modes at frequency ω

Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}+1\right)^{-1}$
Pauli exclusion principle: $0 \leq N_{S_{i}} \leq 1$ for any state

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=$

High energy regime: $\quad W>T S\left(\tau_{S}(\beta)\right)$

2 fermionic modes at frequency ω

Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}+1\right)^{-1}$
Pauli exclusion principle: $0 \leq N_{S_{i}} \leq 1$ for any state
\Rightarrow maximally useful energy for protocol: $W_{\max }=2 T \ln \left(e^{\beta}+1\right)-\omega$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 fermionic modes at frequency ω

Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}+1\right)^{-1}$
Pauli exclusion principle: $0 \leq N_{S_{i}} \leq 1$ for any state
\Rightarrow maximally useful energy for protocol: $W_{\max }=2 T \ln \left(e^{\beta}+1\right)-\omega$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 fermionic modes at frequency ω

Fermi-Dirac statistics: partition function $\mathcal{Z}_{\mathrm{FD}}=1+e^{-\beta}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}+1\right)^{-1}$
Pauli exclusion principle: $0 \leq N_{S_{i}} \leq 1$ for any state \Rightarrow maximally useful energy for protocol: $W_{\max }=2 T \ln \left(e^{\beta}+1\right)-\omega$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number

Energy of thermal state: $E(\tau$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $\quad W>T S\left(\tau_{S}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$

```
Energy of thermal state: E (\tau
```

Entropy of thermal state:

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $\quad W>T S\left(\tau_{S}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$
Energy of thermal state: $E\left(\tau_{S}(\beta)\right)=\omega[\operatorname{coth}(\beta / 2)-1]$
Entropy of thermal state:

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $W>T S\left(\tau_{S}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$
Energy of thermal state: $E\left(\tau_{S}(\beta)\right)=\omega[\operatorname{coth}(\beta / 2)-1]$
Entropy of thermal state: $S\left(\tau_{S}(\beta)\right)=2 f(\operatorname{coth}(\beta / 2))$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$
Energy of thermal state: $E\left(\tau_{S}(\beta)\right)=\omega[\operatorname{coth}(\beta / 2)-1]$
Entropy of thermal state: $S\left(\tau_{S}(\beta)\right)=2 f(\operatorname{coth}(\beta / 2))$

$$
\text { where } f(x)=\frac{x+1}{2} \ln \left(\frac{x+1}{2}\right)-\frac{x-1}{2} \ln \left(\frac{x-1}{2}\right)
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$
Energy of thermal state: $E\left(\tau_{S}(\beta)\right)=\omega[\operatorname{coth}(\beta / 2)-1]$
Entropy of thermal state: $S\left(\tau_{S}(\beta)\right)=2 f(\operatorname{coth}(\beta / 2))$

$$
\text { where } f(x)=\frac{x+1}{2} \ln \left(\frac{x+1}{2}\right)-\frac{x-1}{2} \ln \left(\frac{x-1}{2}\right)
$$

For $W \gg T S\left(\tau_{S}(\beta)\right)$: all energy of step II for correlations

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $\quad W>T S\left(\tau_{s}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$
Energy of thermal state: $E\left(\tau_{S}(\beta)\right)=\omega[\operatorname{coth}(\beta / 2)-1]$
Entropy of thermal state: $S\left(\tau_{S}(\beta)\right)=2 f(\operatorname{coth}(\beta / 2))$

$$
\text { where } f(x)=\frac{x+1}{2} \ln \left(\frac{x+1}{2}\right)-\frac{x-1}{2} \ln \left(\frac{x-1}{2}\right)
$$

For $W \gg T S\left(\tau_{S}(\beta)\right)$: all energy of step II for correlations

$$
W_{\mathrm{II}}=E\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right) \text { and } \mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S}\left(\beta_{\mathrm{II}}\right)\right)
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

High energy regime: $W>T S\left(\tau_{S}(\beta)\right)$

2 bosonic modes at frequency ω

Bose-Einstein statistics: partition function $\mathcal{Z}_{\mathrm{BE}}=\left(1-e^{-\beta}\right)^{-1}$
Thermal state: average particle number $N_{S_{1}}=N_{S_{2}}=\left(e^{\beta}-1\right)^{-1}$
Energy of thermal state: $E\left(\tau_{S}(\beta)\right)=\omega[\operatorname{coth}(\beta / 2)-1]$
Entropy of thermal state: $S\left(\tau_{S}(\beta)\right)=2 f(\operatorname{coth}(\beta / 2))$

$$
\text { where } f(x)=\frac{x+1}{2} \ln \left(\frac{x+1}{2}\right)-\frac{x-1}{2} \ln \left(\frac{x-1}{2}\right)
$$

For $W \gg T S\left(\tau_{S}(\beta)\right)$: all energy of step II for correlations

$$
\begin{gathered}
W_{\text {II }}=E\left(\tau_{S}\left(\beta_{\text {II }}\right)\right) \text { and } \mathcal{I}_{S_{1} S_{2}}=S\left(\tau_{S}\left(\beta_{\text {II }}\right)\right) \\
\mathcal{I}_{S_{1} S_{2}}=2+2 \ln \left(\frac{1}{2} \frac{W_{\text {II }}}{\omega}\right)+\mathcal{O}\left(\frac{\omega}{W_{\text {II }}}\right)
\end{gathered}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Optimal creation of entanglement

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right)
\end{gathered}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

superselection rules: take infimum only over allowed states $\left|\psi_{i}\right\rangle$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

superselection rules: take infimum only over allowed states $\left|\psi_{i}\right\rangle$
Here: no superpositions of even and odd fermions numbers

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

superselection rules: take infimum only over allowed states $\left|\psi_{i}\right\rangle$
Here: no superpositions of even and odd fermions numbers
With this: even and odd subspace decouple: $\theta_{\text {even }}$ and $\theta_{\text {odd }}$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

superselection rules: take infimum only over allowed states $\left|\psi_{i}\right\rangle$
Here: no superpositions of even and odd fermions numbers
With this: even and odd subspace decouple: $\theta_{\text {even }}$ and $\theta_{\text {odd }}$

$$
E_{o F}=\ln (2)\left[\left|1-N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right| \sin \left(2 \theta_{\text {even }}\right)+\left|N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right| \sin \left(2 \theta_{\text {odd }}\right)\right]
$$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{S}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{S_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}\left(\rho_{S}\right)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

superselection rules: take infimum only over allowed states $\left|\psi_{i}\right\rangle$
Here: no superpositions of even and odd fermions numbers
With this: even and odd subspace decouple: $\theta_{\text {even }}$ and $\theta_{\text {odd }}$

$$
\begin{gathered}
E_{o F}=\ln (2)\left[\left|1-N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right| \sin \left(2 \theta_{\text {even }}\right)+\left|N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right| \sin \left(2 \theta_{\text {odd }}\right)\right] \\
\text { energy cost: } \frac{W_{\mathrm{II}}}{\omega}=2\left(1-N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right) \sin ^{2}\left(\theta_{\text {even }}\right)
\end{gathered}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Superselected entanglement of formation

$$
\begin{gathered}
E_{o F}=\inf _{\mathcal{D}\left(\rho_{s}\right)} \sum_{i} p_{i} \mathcal{E}\left(\left|\psi_{i}\right\rangle\right) \\
\text { where } \mathcal{E}\left(\left|\psi_{i}\right\rangle\right)=S\left(\operatorname{Tr}_{s_{2}}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\right) \\
\text { and } \left.\mathcal{D}(\rho s)=\left\{p_{i},\left|\psi_{i}\right\rangle\left|\sum_{i} p_{i}\right| \psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho_{S}\right\}
\end{gathered}
$$

superselection rules: take infimum only over allowed states $\left|\psi_{i}\right\rangle$
Here: no superpositions of even and odd fermions numbers
With this: even and odd subspace decouple: $\theta_{\text {even }}$ and $\theta_{\text {odd }}$

$$
\begin{gathered}
E_{o F}=\ln (2)\left[\left|1-N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right| \sin \left(2 \theta_{\text {even }}\right)+\left|N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right| \sin \left(2 \theta_{\text {odd }}\right)\right] \\
\text { energy cost: } \frac{W_{\text {II }}}{\omega}=2\left(1-N_{S_{1}}^{\mathrm{I}}-N_{S_{2}}^{\mathrm{I}}\right) \sin ^{2}\left(\theta_{\text {even }}\right)
\end{gathered}
$$

$$
\text { numerical optimization over } \theta_{\text {even }}, N_{S_{1}}^{\mathrm{I}}, N_{S_{2}}^{\mathrm{I}}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two fermionic modes

Previous Protocol

Optimal Protocol

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

Entanglement of Formation for two fermionic modes

Previous Protocol

Optimal Protocol

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$ and ∞

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{n d}$ moments: expectations values of quadratures \mathbb{X}_{n}

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=$ irrelevant for entanglement

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=0$ irrelevant for entanglement

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
X_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \quad \text { and } X_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=0$ irrelevant for entanglement Second moments: $\left(\sigma_{S}\right)_{m n}=\operatorname{Tr}\left(\left\{\mathbb{X}_{m}, \mathbb{X}_{n}\right\} \rho_{S}\right)$ covariance matrix

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=0$ irrelevant for entanglement Second moments: $\left(\sigma_{S}\right)_{m n}=\operatorname{Tr}\left(\left\{\mathbb{X}_{m}, \mathbb{X}_{n}\right\} \rho_{S}\right)$ covariance matrix Two-mode thermal state: $\sigma_{S}=\nu(T) \mathbb{1}_{4}=\operatorname{coth}(\beta / 2) \mathbb{1}_{4}$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=0$ irrelevant for entanglement Second moments: $\left(\sigma_{S}\right)_{m n}=\operatorname{Tr}\left(\left\{\mathbb{X}_{m}, \mathbb{X}_{n}\right\} \rho_{S}\right)$ covariance matrix

Two-mode thermal state: $\sigma_{S}=\nu(T) \mathbb{1}_{4}=\operatorname{coth}(\beta / 2) \mathbb{1}_{4}$
Energy: $E\left(\sigma_{S}\right)=\omega(\nu(T)-1), \quad$ Entropy: $S\left(\sigma_{S}\right)=2 f(\nu(T))$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=0$ irrelevant for entanglement Second moments: $\left(\sigma_{S}\right)_{m n}=\operatorname{Tr}\left(\left\{\mathbb{X}_{m}, \mathbb{X}_{n}\right\} \rho_{S}\right)$ covariance matrix

Two-mode thermal state: $\sigma_{S}=\nu(T) \mathbb{1}_{4}=\operatorname{coth}(\beta / 2) \mathbb{1}_{4}$
Energy: $E\left(\sigma_{S}\right)=\omega(\nu(T)-1)$, Entropy: $S\left(\sigma_{S}\right)=2 f(\nu(T))$

$$
\text { where } f(x)=\frac{x+1}{2} \ln \left(\frac{x+1}{2}\right)-\frac{x-1}{2} \ln \left(\frac{x-1}{2}\right)
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

State description for two bosonic modes

two harmonic oscillators: Hilbert space infinite-dimensional \Rightarrow restrict problem

Two-mode Gaussian states

Fully described by $1^{\text {st }}$ and $2^{\text {nd }}$ moments: expectations values of quadratures \mathbb{X}_{n}

$$
\mathbb{X}_{(2 n-1)}=\frac{1}{\sqrt{2}}\left(a_{n}+a_{n}^{\dagger}\right) \text { and } \mathbb{X}_{(2 n)}=\frac{-i}{\sqrt{2}}\left(a_{n}-a_{n}^{\dagger}\right)
$$

First moments: $\operatorname{Tr}\left(\mathbb{X}_{n} \rho_{S}\right)=0$ irrelevant for entanglement Second moments: $\left(\sigma_{S}\right)_{m n}=\operatorname{Tr}\left(\left\{\mathbb{X}_{m}, \mathbb{X}_{n}\right\} \rho_{S}\right)$ covariance matrix

Two-mode thermal state: $\sigma_{S}=\nu(T) \mathbb{1}_{4}=\operatorname{coth}(\beta / 2) \mathbb{1}_{4}$
Energy: $E\left(\sigma_{S}\right)=\omega(\nu(T)-1), \quad$ Entropy: $S\left(\sigma_{S}\right)=2 f(\nu(T))$

$$
\text { where } f(x)=\frac{x+1}{2} \ln \left(\frac{x+1}{2}\right)-\frac{x-1}{2} \ln \left(\frac{x-1}{2}\right)
$$

Energy for cooling: $\frac{W_{\mathrm{I}}}{\omega}=\nu\left(T_{\mathrm{I}}\right)-\nu(T)-2 \beta^{-1}\left[f\left(\nu\left(T_{\mathrm{I}}\right)\right)-f(\nu(T))\right]$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$,

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$, where $\tilde{\nu}_{-}$is the smallest eigenvalue of $\left|i \Omega P \sigma_{S} P\right|$, with $P=\operatorname{diag}\{1,1,1,-1\}$,
\qquad

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$, where $\tilde{\nu}_{-}$is the smallest eigenvalue of $\left|i \Omega P \sigma_{S} P\right|$, with $P=\operatorname{diag}\{1,1,1,-1\}$, and the symplectic form $\Omega_{m n}=-i\left[\mathbb{X}_{m}, \mathbb{X}_{n}\right]$
\qquad

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$, where $\tilde{\nu}_{-}$is the smallest eigenvalue of $\left|i \Omega P \sigma_{S} P\right|$, with $P=\operatorname{diag}\{1,1,1,-1\}$, and the symplectic form $\Omega_{m n}=-i\left[\mathbb{X}_{m}, \mathbb{X}_{n}\right]$

Optimal Gaussian entangling operation: state remains symmetric: $E_{o F}$ computable

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$, where $\tilde{\nu}_{-}$is the smallest eigenvalue of $\left|i \Omega P \sigma_{S} P\right|$, with $P=\operatorname{diag}\{1,1,1,-1\}$, and the symplectic form $\Omega_{m n}=-i\left[\mathbb{X}_{m}, \mathbb{X}_{n}\right]$

Optimal Gaussian entangling operation: state remains symmetric: $E_{o F}$ computable

$$
E_{o F}= \begin{cases}\mathfrak{h}\left(\tilde{\nu}_{-}\right), & \text {if } 0 \leq \tilde{\nu}_{-}<1 \\ 0, & \text { if } \tilde{\nu}_{-} \geq 1\end{cases}
$$

with $\mathfrak{h}(x)=h_{+}(x) \ln \left(h_{+}(x)\right)-h_{-}(x) \ln \left(h_{-}(x)\right)$, and $h_{ \pm}(x)=\frac{(x \pm 1)^{2}}{4 x}$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$, where $\tilde{\nu}_{-}$is the smallest eigenvalue of $\left|i \Omega P \sigma_{S} P\right|$, with $P=\operatorname{diag}\{1,1,1,-1\}$, and the symplectic form $\Omega_{m n}=-i\left[\mathbb{X}_{m}, \mathbb{X}_{n}\right]$

Optimal Gaussian entangling operation: state remains symmetric: $E_{o F}$ computable

$$
E_{o F}= \begin{cases}\mathfrak{h}\left(\tilde{\nu}_{-}\right), & \text {if } 0 \leq \tilde{\nu}_{-}<1 \\ 0, & \text { if } \tilde{\nu}_{-} \geq 1\end{cases}
$$

with $\mathfrak{h}(x)=h_{+}(x) \ln \left(h_{+}(x)\right)-h_{-}(x) \ln \left(h_{-}(x)\right)$, and $h_{ \pm}(x)=\frac{(x \pm 1)^{2}}{4 x}$

$$
\frac{W_{\mathrm{II}}}{\omega}=\frac{\nu^{2}\left(T_{\mathrm{I}}\right)}{2 \tilde{\nu}_{-}}\left[\frac{\tilde{\nu}_{-}}{\nu\left(T_{\mathrm{I}}\right)}-1\right]^{2}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Entanglement for two-mode Gaussian states

Necessary and sufficient condition: negative partial transpose (NPT)
Translates to: entanglement if and only if $0 \leq \tilde{\nu}_{-}<1$, where $\tilde{\nu}_{-}$is the smallest eigenvalue of $\left|i \Omega P \sigma_{S} P\right|$, with $P=\operatorname{diag}\{1,1,1,-1\}$, and the symplectic form $\Omega_{m n}=-i\left[\mathbb{X}_{m}, \mathbb{X}_{n}\right]$

Optimal Gaussian entangling operation: state remains symmetric: $E_{o F}$ computable

$$
\begin{gathered}
E_{o F}= \begin{cases}\mathfrak{h}\left(\tilde{\nu}_{-}\right), & \text {if } 0 \leq \tilde{\nu}_{-}<1 \\
0, & \text { if } \tilde{\nu}_{-} \geq 1,\end{cases} \\
\text { with } \mathfrak{h}(x)=h_{+}(x) \ln \left(h_{+}(x)\right)-h_{-}(x) \ln \left(h_{-}(x)\right), \text { and } h_{ \pm}(x)=\frac{(x \pm 1)^{2}}{4 x}
\end{gathered}
$$

$$
\frac{W_{\mathrm{II}}}{\omega}=\frac{\nu^{2}\left(T_{\mathrm{I}}\right)}{2 \tilde{\nu}_{-}}\left[\frac{\tilde{\nu}_{-}}{\nu\left(T_{\mathrm{I}}\right)}-1\right]^{2} \Rightarrow \text { numerically optimize over } T_{\mathrm{I}}
$$

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}$

Entanglement of Formation for two bosonic modes

Gaussian Protocol

Optimal Protocols

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

Entanglement of Formation for two bosonic modes

Gaussian Protocol

Optimal Protocols

Outperformed by non-Gaussian
protocol:

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

Entanglement of Formation for two bosonic modes

Gaussian Protocol

Optimal Protocols

Gaussian protocol optimal

Outperformed by non-Gaussian
protocol
Rotation to "Bell state" in 2-dim
subspace

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

Entanglement of Formation for two bosonic modes

Gaussian Protocol

Optimal Protocols

Gaussian protocol optimal
Low energies:
Outperformed by non-Gaussian protocol:

Rotation to "Bell state" in 2-dim

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

Entanglement of Formation for two bosonic modes

Gaussian Protocol

Optimal Protocols

Gaussian protocol optimal
Low energies:
Outperformed by non-Gaussian protocol:
Rotation to "Bell state" in 2-dim subspace

Notation: $\beta=\omega / T$, temperatures specified in units of $\hbar \omega / k_{\mathrm{B}}, T=0,0.1, \ldots, 0.9,1$

Thank you for your attention.

D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

[^0]: Outine of our contribution
 Generating total correlations:

 - Bound for overall correlations measured by the mutual information
 - Optimal protocol saturating this bound

 Generating entanglement - bottom-up approach:

 - Ontimal entanglement generation between two bosonic modes
 - Optimal entanglement generation between two fermionic modes
 ${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

[^1]: ${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

[^2]: ${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

[^3]: ${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

[^4]: ${ }^{1}$ D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhannisyan, and M. Huber, arXiv:1409.4647 [quant-ph].

[^5]: For arbitrarily arge bath $\Delta F_{R}=0, I_{S R}=0$ achievable

[^6]: High energy: $T_{\Pi}>T, \quad I$
 ground state reached in step I

